精英家教网 > 高中数学 > 题目详情
5.函数f(x)=cos2x+sinx+a-1,若1≤f(x)≤$\frac{17}{4}$对一切x∈R恒成立,求a的取值范围.

分析 首先,化简函数解析式,然后,利用换元法转化成二次函数的区间最值问题,最后,求解范围即可.

解答 解:根据已知函数,得
f(x)=-sin2x+sinx+a,
=-(sinx-$\frac{1}{2}$)2+a+$\frac{1}{4}$
令sinx=t,t∈[-1,1],
∴当t=-1时,取得最小值a-2,
当t=$\frac{1}{2}$取得最大值为a+$\frac{1}{4}$,
∵1≤f(x)≤$\frac{17}{4}$对一切x∈R恒成立,
∴$\left\{\begin{array}{l}{a-2≥1}\\{a+\frac{1}{4}≤\frac{17}{4}}\end{array}\right.$,
∴3≤a≤4,
∴a的取值范围[3,4].

点评 本题重点考查了同角三角函数基本关系式、换元法、二次函数的最值,三角函数的图象与性质等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知集合E={x|-3<x<2},F={x|0≤x≤4},则E∪F等于(  )
A.A{x|-3<x≤4}B.{x|0≤x<2}C.{x|2<x≤4}D.{x|-3<x≤0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知cosB=-$\frac{1}{2}$.
(1)求sinAsinC的取值范围;
(2)若b=2$\sqrt{3}$,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若f(x)=x2-$\sqrt{2}$,则f[f($\sqrt{2}$)]=6-5$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和为Sn,且Sn=2an-n;
(1)求证:数列{an+1}为等比数列;
(2)令bn=anlog2(an+1),求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.化简$\overrightarrow{AB}$+$\overrightarrow{BD}$-$\overrightarrow{AD}$=(  )
A.$\overrightarrow{AD}$B.$\overrightarrow 0$C.$\overrightarrow{BC}$D.$\overrightarrow{DA}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知直线l的参数方程为$\left\{\begin{array}{l}x=1+\frac{t}{2}\\ y=2+\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数),则其直角坐标方程为(  )
A.$\sqrt{3}$x+y+2-$\sqrt{3}$=0B.$\sqrt{3}$x-y+2-$\sqrt{3}$=0C.x-$\sqrt{3}$y+2-$\sqrt{3}$=0D.x+$\sqrt{3}$y+2-$\sqrt{3}$=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=sin($\frac{π}{3}$-2x)的单调减区间是(  )
A.[2kπ-$\frac{π}{12}$,2kπ+$\frac{5π}{12}$](k∈Z)B.[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z)
C.[2kπ+$\frac{5π}{12}$,2kπ+$\frac{11π}{12}$](k∈Z)D.[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设集合A={x|y=ln(x-3)},集合B={x|2x-4≤1},则A∩B={x|3<x≤4}.

查看答案和解析>>

同步练习册答案