精英家教网 > 高中数学 > 题目详情
11.函数f(x)=Asin(ωx+φ)(其中A>0,$|\begin{array}{l}{φ}\end{array}|<\frac{π}{2}$)的图象如图所示,为了得到g(x)=2sin2x的图象,则只需将f(x)的图象(  )
A.向右平移$\frac{π}{6}$个长度单位B.向右平移$\frac{π}{12}$个长度单位
C.向左平移$\frac{π}{6}$个长度单位D.向左平移$\frac{π}{12}$个长度单位

分析 求出函数的解析式,利用坐标变换求解即可.

解答 解:由函数的图象可知:T=4×$(\frac{5π}{12}-\frac{π}{6})$=π.
ω=$\frac{2π}{π}$=2.x=$\frac{π}{6}$时,函数的最大值为:2.A=2,
2=2sin($2×\frac{π}{6}$+φ),由函数的图象可得φ=$\frac{π}{6}$.
为了得到g(x)=2sin2x的图象,则只需将f(x)=2sin[2(x+$\frac{π}{12}$)]的图象向右平移$\frac{π}{12}$个长度单位.
故选:B.

点评 本题考查三角函数的解析式的求法,函数的图象的平移,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.若实数x,y满足:$\left\{{\begin{array}{l}{x-y+2≥0}\\{x+y-4≥0}\\{x≤4}\end{array}}\right.$,则$\frac{x}{y}$的取值范围是[$\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某公司为加强内部管理,降低成本,2004年1月管理费用为20万元,从2月份开始每月都比上一个月降低费用3000元,该公司1至6月份的管理费用是月份序号的函数,试用列表法、图象法、解析法多种形式表示这个函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.“1,x,16成等比数列”是“x=4”成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)的定义域为{x∈R|x≠0},且对任意非零实数x,y都满足f(xy)=f(x)+f(y),则(  )
A.f(1)=0且f(x)为偶函数B.f(-1)=0且f(x)为奇函数
C.f(x)为增函数且为奇函数D.f(x)为增函数且为偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,三棱锥P-ABC中,PA=PB=PC=AC=4,AB=BC=2$\sqrt{2}$.
(1)求证:平面ABC⊥平面APC;
(2)求直线PA与平面PBC所成角的正弦值;
(3)若M为棱BC上一点,且二面角M-PA-C的大小为$\frac{π}{6}$,求$\frac{BM}{BC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系xOy中,直线l的参数方程是$\left\{\begin{array}{l}{x=t}\\{y=3t+a}\end{array}\right.$,以O为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2$\sqrt{2}$cos(θ+$\frac{π}{4}$).
(1)求曲线C的直角坐标方程;
(2)若直线l过点(2,3),求直线l被圆C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,将长方形OBCD沿对角线OC折叠,OD=8,OB=4,求E点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.给出下列四个结论:
(1)若x,y∈R,则“x=y”是“xy≥($\frac{x+y}{2}$)2”的充要条件
(2)设某大学的女生体重y(kg)与身高x(cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的线性回归方程为y=0.85x-85.71,则若该大学某女生身高增加1cm,则其体重约增加0.85kg;
(3)为调查中学生近视情况,测得某校男生150名中有80名近视,在140名女生中有70名近视.在检验这些学生眼睛近视是否与性别有关时,应该用独立性检验最有说服力;
(4)已知随机变量ξ服从正态分布N(1,σ2),P(ξ≤4)=0.79,则P(ξ≤-2)=0.21
其中正确结论的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案