精英家教网 > 高中数学 > 题目详情
5.(1)如图1,矩形ABCD中AB=1,AD>1且AD长不定,将△BCE沿CE折起,使得折起后点B落到AD边上,设∠BCE=θ,CE=L,求L关于θ的函数关系式并求L的最小值.
(2)如图2,矩形ABCD中AB=1.将矩形折起,使得点B与点F重合,当点F取遍CD边上每一个点时,得到的每一条折痕都与边AD、CB相交,求边AD长的取值范围.

分析 (1)由图1及对称性知,CF=CB=Lcosθ,FE=BE=Lsinθ,又∠FEA=∠FCB=2θ,
得AE=FEcos2θ=Lsinθcos2θ,由AE+BE=Lsinθcos2θ+Lsinθ=1得,
L=$\frac{1}{sinθ+sinθcos2θ}$,利用导数求解
(2)当着痕GH经过AD,BC中点时,B与C重合,当矩形ABCD为正方形时,点B与A重合时,折痕刚好为对角线,AD≥BC

解答 解:(1)由图1及对称性知,
CF=CB=Lcosθ,FE=BE=Lsinθ,
又∠FEA=∠FCB=2θ,
∴AE=FEcos2θ=Lsinθcos2θ,
由AE+BE=Lsinθcos2θ+Lsinθ=1得,
L=$\frac{1}{sinθ+sinθcos2θ}$,
即L关于θ的函数关系式
L=$\frac{1}{sinθ+sinθcos2θ}$,
θ∈(0,$\frac{π}{2}$),
L′=$\frac{2cosθ(2si{n}^{2}θ-co{s}^{2}θ)}{4si{n}^{2}θco{s}^{4}θ}$=0,
可得tanθ=$\frac{\sqrt{2}}{2}$,
即有arctan$\frac{\sqrt{2}}{2}$<θ<$\frac{π}{2}$,L′>0,函数L递增;
0<θ<arctan$\frac{\sqrt{2}}{2}$,L′<0,函数L递减.
可得L=$\frac{1}{\frac{\sqrt{3}}{3}+\frac{\sqrt{3}}{3}×(1-2×\frac{1}{3})}$=$\frac{3\sqrt{3}}{4}$,
此时L取得最小值为$\frac{3\sqrt{3}}{4}$;
(2)如下图,当着痕GH经过AD,BC中点时,B与C重合,
当矩形ABCD为正方形时,点B与A重合时,折痕刚好为对角线,
AD≥BC,∴AD的范围是[1,+∞)


点评 本题考查了矩形的对折问题、直角三角形的边角关系、倍角公式、三角函数的单调性、利用导数研究函数的单调性极值与最值,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.计算:
(1)$\root{3}{{{{(-27)}^2}}}+{(0.002)^{-\frac{1}{2}}}-10{(\sqrt{5}-2)^{-1}}+{({\sqrt{2}-\sqrt{3}})^0}$
(2)lg25+$\frac{2}{3}lg8+lg5•lg20+{(lg2)^2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求证:(1)sin($\frac{3π}{2}$-α)=-cosα;
(2)cos($\frac{3π}{2}$+α)=sinα.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,F1,F2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,且焦距为2$\sqrt{2}$,动弦AB平行于x轴,且|F1A|+|F1B|=4.
(1)求椭圆C的方程;
(2)若点P是椭圆C上异于点A,B的任意一点,且直线PA、PB分别与y轴交于点M、N,若MF2、NF2的斜率分别为k1、k2,求证:k1•k2是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设平面内两向量$\overrightarrow{a}$与$\overrightarrow{b}$互相垂直,且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,又k与t是两个不同时为零的实数.
(1)若$\overrightarrow{x}$=$\overrightarrow{a}$+(t-3)$\overrightarrow{b}$与$\overrightarrow{y}$=-k$\overrightarrow{a}$+t$\overrightarrow{b}$垂直,试求k关于t的函数关系式k=f(t);
(2)求函数k=f(t)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设α、β分别是方程log2x+x-3=0和2x+x-3=0的根,求α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列四个命题中正确的是(  )
A.经过定点P0(x0,y0)的直线都可以用方程y-y0=k(x-x0)表示
B.经过任意两个不同点P1(x1,y1)、P2(x2,y2)的直线都可以用方程$\frac{(y-{y}_{1})}{({y}_{2}-{y}_{1})}$=$\frac{(x-{x}_{1})}{({x}_{2}-{x}_{1})}$表示
C.不经过原点的直线都可以用方程$\frac{x}{a}+\frac{y}{b}$=1表示
D.斜率存在且不为0,过点(n,0)的直线都可以用方程x=ny+n表示.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知全集U=R,集合$A=\left\{{x|\frac{1}{2}≤{2^x}<8}\right\}$,集合$B=\left\{{x|\frac{5}{x+2}≥1}\right\}$.
(1)求A,B;
(2)求(∁RA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设$f(x)=\left\{\begin{array}{l}sinπx,x≥0\\ cos({\frac{πx}{2}+\frac{π}{3}}),x<0\end{array}\right.$则$f(f(\frac{15}{2}))$=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步练习册答案