精英家教网 > 高中数学 > 题目详情
已知函数f(x)=-x2+2x
(1)证明函数f(x)在(-∞,1]上是增函数;
(2)当x∈[-5,-2]时,f(x)是增函数还是减函数?
分析:(1)证明本题的大前提是增函数的定义,即增函数f(x)满足:
在给定区间内任取自变量的两个值x1,x2且x1<x2,f(x1)<f(x2),
小前提是函数f(x)=-x2+2x,x∈(-∞,1],结论满足增函数定义.
(2)关键是看[-5,-2]与f(x)的增区间或减区间的关系.
解答:解:(1)方法一:任取x1,x2∈(-∞,1],x1<x2
则f(x1)-f(x2)=(x2-x1)(x2+x1-2),
∵x1<x2≤1,∴x2+x1-2<0,∴f(x1)-f(x2)<0,f(x1)<f(x2
∴f(x)=-x2+2x在(-∞,1]上是增函数;
方法二:
∵f(x)=-2x+2=-2(x-1),当x∈(-∞,1)时,x-1<0,∴-2(x-1)>0,
∴f(x)>0在x∈(-∞,1)上恒成立.
故f(x)在(-∞,1]上是增函数.
2)∵f(x)在(-∞,1]上是增函数,
而[-5,-2]是区间(-∞,1]的子区间,∴f(x)在[-5,-2]上是增函数.
点评:本题主要考查函数单调性的判断问题.函数的单调性判断一般有两种方法,即定义法和求导判断导数正负.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案