精英家教网 > 高中数学 > 题目详情
15.已知椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$的两个焦点分别为F1,F2,点P是椭圆上任意一点,若|PF1|=4,则|PF2|=(  )
A.1B.2C.4D.6

分析 由椭圆方程求得a,再由定义求得|PF2|.

解答 解:由椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$,得a2=25,则a=5,
又|PF1|=4,
∴|PF2|=2a-|PF1|=10-4=6.
故选:D.

点评 本题考查椭圆的简单性质,考查椭圆定义的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知数列{an}满足a1=1,an+1-an=3n+2n+1求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知椭圆C:$\frac{x^2}{25}+\frac{y^2}{b^2}=1({0<b<5})$的长轴长、短轴长、焦距成等差数列,则该椭圆的方程是(  )
A.$\frac{x^2}{25}+\frac{y^2}{4}=1$B.$\frac{x^2}{25}+\frac{y^2}{9}=1$C.$\frac{x^2}{25}+\frac{y^2}{16}=1$D.$\frac{x^2}{25}+{y^2}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知$α∈({\frac{π}{2},\frac{3π}{2}}),tan({α-π})=-\frac{3}{4}$,则sinα+cosα的值是(  )
A.$±\frac{1}{5}$B.$\frac{1}{5}$C.$-\frac{1}{5}$D.$-\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知圆C的方程为:x2+y2=9,过圆C上一动点M作平行于y轴的直线m,设m与x轴的交点为N,若向量$\overrightarrow{OQ}=\overrightarrow{OM}+\overrightarrow{ON}$,则动点Q的轨迹方程是$\frac{x^2}{4}+{y^2}=9$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知正项数列{an}中,a1=2,$a_n^2-{a_n}{a_{n-1}}-2n{a_{n-1}}-4{n^2}=0$,(n≥2,n∈N)
(1)写出a2、a3的值(只须写结果);
(2)求出数列{an}的通项公式;
(3)设${b_n}=\frac{1}{{{a_{n+1}}}}+\frac{1}{{{a_{n+2}}}}+\frac{1}{{{a_{n+3}}}}+…+\frac{1}{{{a_{2n}}}}$,若对任意的正整数n,当m∈[-1,1]时,不等式${t^2}-2mt+\frac{1}{6}>{b_n}$恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=3x2-2ax-8在(1,2)上不单调,则实数a的取值范围是(  )
A.[3,6]B.(-∞,3]∪[6,+∞)C.[3,6)D.(3,6)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知圆C的方程是x2+y2-4x=0,直线l:ax-y-4a+2=0(a∈R)与圆C相交于M、N两点,设P(4,2),则|PM|+|PN|的取值范围是(4,4$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知直线l过点P(1,2)且与圆C:x2+y2=2相交于A,B两点,△ABC的面积为1,则直线l的方程为x-1=0,3x-4y+5=0.

查看答案和解析>>

同步练习册答案