分析 (1)由已知集合A,求出A=[-2,+∞),然后解分式不等式求出集合B=[-3,-1),则集合A∩B,A∪B的答案可求;
(2)由集合A,求出∁uA,则集合(∁uA)∩B的答案可求.
解答 解:(1)A={x|x+2≥0,x∈R}=[-2,+∞),
由$\frac{x-1}{x+1}≥2$,得$\frac{x-1}{x+1}-2≥0$,即$\frac{-x-3}{x+1}≥0$.
解得:-3≤x<-1.
∴B=[-3,-1),
则A∩B=[-2,-1),A∪B=[-3,+∞);
(2)∵∁uA=(-∞,-2),
∴(CuA)∩B=[-3,-2).
点评 本题考查了交、并、补集的混合运算,考查了分式不等式的解法,是基础题.
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 0 | C. | 2 | D. | 0或2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | f1(x)和 f2(x)都是P-函数 | B. | f1(x)是P-函数,f2(x)不是P-函数 | ||
C. | f1(x)不是P-函数,f2(x)是P-函数 | D. | f1(x)和 f2(x)都不是P-函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | f(x)=2x-1•2x+1,g(x)=4x | B. | $f(x)=\sqrt{x^2},g(x)={({\sqrt{x}})^2}$ | ||
C. | $f(x)=\frac{{{x^2}-2}}{{x-\sqrt{2}}},g(x)=x+\sqrt{2}$ | D. | $f(x)=\sqrt{x+1}•\sqrt{x-1},g(x)=\sqrt{{x^2}-1}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 不具有线性相关关系 | B. | 具有线性相关关系 | ||
C. | 它们的线性关系还要进一步确定 | D. | 不确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | f(x)=x${\;}^{\frac{1}{2}}$ | B. | f(x)=3x | C. | f(x)=($\frac{1}{2}$)x | D. | f(x)=log2x |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | x3<y3 | B. | log${\;}_{\frac{1}{3}}$x<log${\;}_{\frac{1}{3}}$y | ||
C. | ($\frac{1}{3}$)x$<(\frac{1}{3})^{y}$ | D. | $\frac{3}{x}<\frac{3}{y}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com