如图,在五面体中,四边形是边长为的正方形,平面,,,,,是的中点.
(1)求证:平面;
(2)求证:平面;
(3)求五面体的体积.
(1)详见解析;(2)详见解析;(3).
【解析】
试题分析:(1)连接交于点,取的中点,连接、,先证明,再利用中位线证明,利用传递性证明,进而证明四边形为平行四边形,进而得到,最后利用直线与平面平行的判定定理证明平面;(2)证法一是取的中点,先证明四边形为平行四边形得到,然后通过勾股定理证明从而得到,然后结合四边形为正方形得到,最后利用直线与平面垂直的判定定理证明平面;证法二是连接交于点,先利用勾股定理证明,利用得到,再利用等腰三角形中三线合一得到,利用直线与平面垂直的判定定理证明平面,进而得到,然后结合四边形为正方形得到,最后利用直线与平面垂直的判定定理证明平面;(3)将五面体分割为四棱锥与三棱锥,利用(2)中的结论平面得到平面从而计算三棱锥的体积,利用结论平面以及得到平面以此计算四棱锥的体积,最终将两个锥体的体积相加得到五面体的体积.
试题解析:(1)连接,与相交于点,则是的中点,连接、,
是的中点,
,,
平面,平面,平面平面,,
,,,四边形为平行四边形,
,,
平面,平面,平面;
(2)证法1:取的中点,连接,则,
由(1)知,,且,四边形为平行四边形,
,,
在中,,又,得,,
在中,,,,
,,,即,
四边形是正方形,,
,平面,平面,平面;
证法2:在中,为的中点,.
在中,,,
,,
,,
,平面,平面,,平面,
平面,.
四边形是正方形,.
平面,平面,,平面.
(3)连接,
在中,,.
由(2)知平面,且,平面.
平面,,平面.
四棱锥的体积为.
三棱锥的体积为.
五面体的体积为.
考点:1.直线与平面平行;2直线与平面垂直;3.分割法求多面体的体积
科目:高中数学 来源:2013-2014学年广东省揭阳市高三3月第一次模拟考试理科数学试卷(解析版) 题型:选择题
下列函数是偶函数,且在上单调递增的是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年广东省惠州市高三4月模拟考试文科数学试卷(解析版) 题型:选择题
如图,一个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为,那么这个几何体的体积为 ( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年广东省广州市毕业班综合测试二文科数学试卷(解析版) 题型:选择题
一个几何体的三视图如图所示,则该几何体的体积为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com