精英家教网 > 高中数学 > 题目详情
10.设角α=-$\frac{35}{6}$π,则$\frac{2sin(π+α)cos(π-α)-cos(π+α)}{1+si{n}^{2}α+sin(π-α)-co{s}^{2}(π+α)}$的值等于$\sqrt{3}$.

分析 直接利用诱导公式化简所求表达式,然后代入求解即可.

解答 解:角α=-$\frac{35}{6}$π,
$\frac{2sin(π+α)cos(π-α)-cos(π+α)}{1+si{n}^{2}α+sin(π-α)-co{s}^{2}(π+α)}$
=$\frac{2sinαcosα+cosα}{1+si{n}^{2}α+sinα-co{s}^{2}α}$
=$\frac{2sinαcosα+cosα}{2si{n}^{2}α+sinα}$
=$\frac{cosα}{sinα}$
=$\frac{cos(-\frac{35}{6}π)}{sin(-\frac{35}{6}π)}$
=$\frac{cos\frac{π}{6}}{sin\frac{π}{6}}$
=$\sqrt{3}$.

点评 本题考查诱导公式的应用,三角函数化简求值,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.函数f(x)=$\left\{\begin{array}{l}{1,x为有理数}\\{π,x为无理数}\end{array}\right.$,下列结论不正确的(  )
A.此函数为偶函数B.此函数的定义域是R
C.此函数既有最大值也有最小值D.方程f(x)=-x无解

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知:数列{an},{bn}满足$\left\{\begin{array}{l}{{a}_{n}=2{a}_{n-1}+{b}_{n-1}}\\{{b}_{n}=3{a}_{n-1}+4{b}_{n-1}}\end{array}\right.$(n≥2)且a1=2,b1=3,求an,bn的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.己知直线l:Ax+By+C=0(A,B不全为0),点P(x0,y0)在l上,则l的方程可化为(  )
A.A(x+x0)+B(y+y0)+C=0B.A(x+x0)+B(y+y0)=0C.A(x-x0)+B(y-y0)+C=0D.A(x-x0)+B(y-y0)=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.不等式8x-3x2>4的解是{x|$\frac{2}{3}$<x<2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若直线l与平面内无数条直线垂直,则(  )
A.l?aB.l∥aC.l与a相交D.以上都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中.已知圆C经过A(0,2),B(-1,0),D(t,0)(t>0)三点.
(1)若t=$\frac{2}{3}$,求圆C在点D处的切线方程;
(2)若t=4时,在x轴上存在点E(异于点O)满足:对于圆C上任意一点P,都有$\frac{PE}{PO}$为一常数,试求所有满足条件的点E的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.数列{an}中,an+1=$\frac{1+{a}_{n}}{1-{a}_{n}}$,且a1=2,求a2008

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图:一个圆锥的底面半径为1,高为3,在其中有一个半径为x的内接圆柱.
(1)试用x表示圆柱的高;
(2)当x为何值时,圆柱的侧面积最大,最大侧面积是多少?

查看答案和解析>>

同步练习册答案