精英家教网 > 高中数学 > 题目详情

已知是一个等差数列,且
①求的通项;                   ②求项和的最大值。

(1);(2)当时,取得最大值4。

解析试题分析:(1)由已知得:  ∴        (5分)
                  (6分)
(2)    (10分)
∴当时,取得最大值4                (12分)
考点:等差数列的通项公式、求和公式,二次函数的性质。
点评:中档题,确定等差数列的通项公式,往往利用已知条件,建立相关元素的方程组,以达到解题目的。公差不为0时,等差数列的前n项和,是关于n的二次函数,因此,可利用二次函数图象和性质确定最值。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

数列的前n项和为满足等式
(Ⅰ)求的值;
(Ⅱ)求证:数列是等差数列;
(Ⅲ)若数列满足,求数列的前n项和
(Ⅳ)设,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列{an}的通项公式为,从数列{an}中依次取出a1,a2,a4,a8,…,,…,构成一个新的数列{bn},求{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{}的前n项和,数列{}满足=
(I)求证数列{}是等差数列,并求数列{}的通项公式;
(Ⅱ)设,数列{}的前n项和为Tn,求满足的n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列满足:的前n项和为
(Ⅰ)求
(Ⅱ)令bn=(nN*),求数列的前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)等差数列中,已知,试求n的值
(2)在等比数列中,,公比,前项和,求首项 和项数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)已知数列的前项和为,,,求
(2)已知等差数列的前项和为,求数列的前2012项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

)已知数列是等差数列,其前n项和为
(I)求数列的通项公式;
(II)设p、q是正整数,且p≠q. 证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列是首项为,公比的等比数列. 设,数列满足.
(Ⅰ)求证:数列成等差数列;    
(Ⅱ)求数列的前项和.

查看答案和解析>>

同步练习册答案