精英家教网 > 高中数学 > 题目详情
3.已知平面内A,B两点的坐标分别为(2,2),(0,-2),O为坐标原点,动点P满足|$\overrightarrow{BP}$|=1,则|$\overrightarrow{OA}$+$\overrightarrow{OP}$|的取值范围为(  )
A.(1,3)B.[1,3]C.(1,9)D.[1,9]

分析 设点P(x,y),求得P的轨迹为圆心为(0,-2),半径为1的圆,则|$\overrightarrow{OA}$+$\overrightarrow{OP}$|表示点P(x y)与点M(-2,-2)之间的距离,再由圆外一点与圆的距离的最小值为d-r,最大值为d+r,计算即可得到所求范围.

解答 解:设点P(x,y),则由动点P满足|$\overrightarrow{BP}$|=1可得 x2+(y+2)2=1,
即为圆心为(0,-2),半径为1的圆.
根据$\overrightarrow{OA}$+$\overrightarrow{OP}$的坐标为(2+x,y+2),可得|$\overrightarrow{OA}$+$\overrightarrow{OP}$|=$\sqrt{(x+2)^{2}+(y+2)^{2}}$,
表示点P(x y)与点M(-2,-2)之间的距离.
显然点M在圆x2+(y+2)2=1的外部,求得|MB|=$\sqrt{(-2-0)^{2}+(-2+2)^{2}}$=2,
|$\overrightarrow{OA}$+$\overrightarrow{OP}$|的最小值为|MB|-1=2-1=1,最大值为|MB|+1=2+1=3.
故所求取值范围是[1,3].
故选:B.

点评 本题主要考查两点间的距离公式,考查圆的方程的应用,考查两个向量坐标形式的运算,求向量的模,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.圆x2+y2=5与圆x2+y2+2x-3=0的交点坐标是(1,2),(1,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.判断下列函数的奇偶性:
(1)f(x)=$\sqrt{2}$sin(2x+$\frac{5}{2}π$);
(2)f(x)=1g(sinx+$\sqrt{1+si{n}^{2}x}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若x3+x6的展开式可以写成a0+a1(x+1)+a2(x+1)2+…+a6(x+1)6,则a2=45.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=$\frac{ax+3}{x-1}$在(1,+∞)上单调递增,则实数a的范围是(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数y=2$\sqrt{x}$sin$\frac{x}{2}$cos$\frac{x}{2}$的导数是$\frac{1}{2\sqrt{x}}$sinx+$\sqrt{x}$cosx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求两点(1,-4)和(3,6)垂直平分线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若f(x)=$\frac{1}{2}$x2-ax+alnx在(0,+∞)上单调增,则实数a的取值范围为(  )
A.(0,+∞)B.(-∞,4]C.[0,4]D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{|lo{g}_{2}x|,x>0}\end{array}\right.$,则f(f(-1))的值为(  )
A.-1B.$\frac{1}{2}$C.2D.1

查看答案和解析>>

同步练习册答案