精英家教网 > 高中数学 > 题目详情

已知函数

(I)求的最小正周期和值域;

(II)若的一个零点,求的值。

 

【答案】

解:(I)(2分)

    ,(4分)

    所以的最小正周期为。(5分)

    的值域为(6分)

    (II)由

    又由

    因为,所以。(8分)

    此时,

   

   

    (10分)

【解析】本试题主要是考查了三角函数的图像与性质的运用,以及三角函数化简的综合运用。

(1)根据已知条件结合二倍角公式化为单一三角函数,然后求解周期和值域的问题。

(2)根据三角函数的零点问题,转化为求解三角方程来得到角的值。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(09年山东猜题卷)已知函数求:

(I)求证:函数的图象关于点中心对称,并求的值;

(II)设,且1<a1<2,求证+…+<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

(07年辽宁卷理)(12分)

已知函数

(I)证明:当时,上是增函数;

(II)对于给定的闭区间,试说明存在实数,当时,在闭区间上是减函数;

(III)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

(07年湖南卷理)(12分)

已知函数

(I)设是函数图象的一条对称轴,求的值.

(II)求函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省十校联合体高三(上)期初联考数学试卷 (理科)(解析版) 题型:解答题

已知函数
(I)设x=x是函数y=f(x)图象的一条对称轴,求g(x)的值;
(II)求函数h(x)=f(x)+g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源:2010年高考试题(福建卷)解析版(理) 题型:解答题

 

(Ⅰ)已知函数

(i)求函数的单调区间;

(ii)证明:若对于任意非零实数,曲线C与其在点处的切线交于另一点

,曲线C与其在点处的切线交于另一点,线段

(Ⅱ)对于一般的三次函数(Ⅰ)(ii)的正确命题,并予以证明。

 

 

查看答案和解析>>

同步练习册答案