精英家教网 > 高中数学 > 题目详情

【题目】【2017安徽淮北二模】选修4—4:坐标系与参数方程

在直角坐标系中, 为极点, 轴正半轴为极轴建立极坐标系, 的极坐标方程为,直线的参数方程为 (t为参数), 直线和圆交于两点。

(Ⅰ)求圆心的极坐标;

(Ⅱ)直线轴的交点为,求

【答案】(1)(2)8

【解析】试题分析:(1)利用将圆的极坐标方程化为直角坐标方程,根据代入消元法将直线的参数方程化为普通方程;(2)因为直线恰好经过圆C的圆心,所以

试题解析:(1)由,得,得,故圆的普通方程为,所以圆心坐标为,圆心的极坐标为.

(2)把代入

所以点A、B对应的参数分别为

得点对应的参数为

所以

法二:把化为普通方程得

得点P坐标为,又因为直线恰好经过圆C的圆心,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】【2017镇江一模】如图,某公园有三条观光大道围成直角三角形,其中直角边

斜边现有甲、乙、丙三位小朋友分别在大道上嬉戏,所在位

置分别记为点

(1)若甲乙都以每分钟的速度从点出发在各自的大道上奔走,到大道的另一端

时即停,乙比甲迟分钟出发,当乙出发分钟后,求此时甲乙两人之间的距离;

(2)设,乙丙之间的距离是甲乙之间距离的倍,且,请将甲

乙之间的距离表示为的函数,并求甲乙之间的最小距离

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面坐标系内,O为坐标原点,向量 =(1,7), =(5,1), =(2,1),点M为直线OP上的一个动点.
(1)当 取最小值时,求向量 的坐标;
(2)在点M满足(I)的条件下,求∠AMB的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系xOy中,过椭圆M: (a>b>0)右焦点的直线x+y﹣ =0交M于A,B两点,P为AB的中点,且OP的斜率为
(Ⅰ)求M的方程
(Ⅱ)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017江西南昌十所重点二模】选修4—4:坐标系与参数方程

在平面直角坐标系xOy中,曲线C1的参数方程为t为参数).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2

(Ⅰ)求曲线C1C2的直角坐标方程,并分别指出其曲线类型;

(Ⅱ)试判断:曲线C1C2是否有公共点?如果有,说明公共点的个数;如果没有,请说明理由;

(Ⅲ)设是曲线C1上任意一点,请直接写出a + 2b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为,且Sn=n2+n,
(1)求数列{an}的通项公式;
(2)令bn=3an , 求证:数列{bn}是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1y=cos xC2y=sin (2x+),则下面结论正确的是

A. C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

B. C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

C. C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

D. C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数=lnx+ax2+(2a+1)x

(1)讨论的单调性;

(2)当a﹤0时,证明

查看答案和解析>>

同步练习册答案