精英家教网 > 高中数学 > 题目详情
(2013•哈尔滨一模)一个简单几何体的主视图、侧视图如图所示,则其俯视图不可能为 ①长、宽不相等的矩形;②正方形;③圆;④三角形.其中正确的是(  )
分析:通过题目中的正视图与侧视图,结合三视图的作法规则,来判断侧视图的形状,由于正视图中的长与侧视图中的长不一致,此特征即是判断俯视图开关的关键,由此标准对四个可选项依次判断即可.
解答:解:由题设条件知,正视图中的长与侧视图中的长不一致,
对于①,俯视图是长方形是可能的,比如此几何体为一个长方体时,满足题意;
对于②,由于正视图中的长与宽,侧视图是正方形,几何体不是正方体,故俯视图不可能是正方形;
对于③,由于正视图中的长与侧视图中的长不一致,几何体不是圆柱,故俯视图不可能是圆形;
对于④,如果此几何体是一个三棱柱,满足正视图中的长与侧视图中的长不一致,故俯视图可能是三角形,也可以是直角三角形.
综上知②③是不可能的图形.
故选B.
点评:本题考查简单空间图形的三视图,考查根据作三视图的规则来作出三个视图的能力,做到心中有图有型.三视图是高考的考点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•哈尔滨一模)正三角形ABC的边长为2,将它沿高AD翻折,使点B与点C间的距离为1,此时四面体ABCD外接球表面积为
13
3
π
13
3
π

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•哈尔滨一模)已知函数f(x)=lnx,g(x)=ex
( I)若函数φ(x)=f(x)-
x+1x-1
,求函数φ(x)的单调区间;
(Ⅱ)设直线l为函数的图象上一点A(x0,f (x0))处的切线.证明:在区间(1,+∞)上存在唯一的x0,使得直线l与曲线y=g(x)相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•哈尔滨一模)已知函数①y=sinx+cosx,②y=2
2
sinxcosx
,则下列结论正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•哈尔滨一模)选修4-5:不等式选讲
已知函数f(x)=log2(|x-1|+|x-5|-a)
(Ⅰ)当a=5时,求函数f(x)的定义域;
(Ⅱ)当函数f(x)的定义域为R时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•哈尔滨一模)双曲线
x2
a2
-
y2
b2
=1
的渐近线与圆x2+(y-2)2=1相切,则双曲线离心率为(  )

查看答案和解析>>

同步练习册答案