分析 (1)利用不等式f(x)≤3的解集为[1,2],可得x2+ax+b-3=0的解为1,2,求出a,b,即可求f(x)的解析式;
(2)配方确定函数的对称轴,再进行分类讨论,利用函数的单调性,即可求得二次函数f(x)在[m,m+1](m∈R)上的最小值g(m).
解答 解:(1)∵不等式f(x)≤3的解集为[1,2],
∴x2+ax+b-3=0的解为1,2,
∴1+2=-a,1×2=b-3,
∴a=-3,b=5;
(2)f(x)=x2-3x+5=(x-1.5)2+2.75的对称轴为 x=1.5,
当m+1<1.5,即m<0.5时,f(x)在[m,m+1]是减函数.
∴f(x)min=f(m+1)=(m-0.5)2+2.75
当m≤1.5≤m+1,即0.5≤m≤1.5时,f(x)在[m,1.5]是减函数,在[1.5,m+1]是增函数.
f(x)min=f(1.5)=2.75
当m>1.5时,f(x)在[m,m+1]是增函数,∴f(x)min=f(m)=(m-1.5)2+2.75.
∴g(m)=$\left\{\begin{array}{l}{(m-0.5)^{2}+2.75,m<0.5}\\{2.75,0.5≤m≤1.5}\\{(m-1.5)^{2}+2.75,m>1.5}\end{array}\right.$.
点评 本题考查二次函数的最值,考查分类讨论的数学思想,正确分类是关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,1) | B. | (0,1] | C. | (0,2) | D. | (0,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{8}{5}$ | B. | $\frac{5}{8}$ | C. | $\frac{5}{3}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{1}{2}$+$\frac{5}{2}$i | B. | -$\frac{1}{2}$-$\frac{5}{2}$i | C. | -$\frac{5}{2}$+$\frac{1}{2}$i | D. | -$\frac{5}{2}$-$\frac{1}{2}$i |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y=2x-x2-1 | B. | $y=\frac{{{2^x}sinx}}{{{2^x}+1}}$ | C. | y=(x2-2x)ex | D. | $y=\frac{x}{lnx}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com