精英家教网 > 高中数学 > 题目详情

【题目】已知实数x、y满足 ,目标函数z=x+ay.
(1)当a=﹣2时,求目标函数z的取值范围;
(2)若使目标函数取得最小值的最优解有无数个,求 的最大值.

【答案】
(1)解:当a=﹣2时,z=x﹣2y,由z=x﹣2y得y=

作出不等式组对应的平面区域如图(阴影部分ABC):

平移直线y=

由图象可知当直线y= ,过点C时,直线y= 的截距最大,此时z最小,

,解得 ,即C(4,2).此时z=4﹣2×2=4﹣4=0,

当直线与x﹣2y﹣2=0重合时,直线y= 的截距最小,此时z最大,

此时z=2,即0≤z≤2


(2)解:若a>0,由题意知最优解应该在线段BC上取得,但此时取到的最大值不满足条件.

当a=0,不满足条件.

若a<0,最优解应该在线段AC上取得,故直线x+ay=0与AC平行,

则kAC=1=﹣ ,得a=﹣1.

= 的几何意义是区域内的点到点D(﹣1,0)的斜率,

由图象知当点与C(4,2)重合时, 取得最大值


【解析】(1)当a=﹣2时,z=x﹣2y,由z=x﹣2y得y= ,平移直线进行求解即可.(2)根据目标函数取得最小值的最优解有无数个,求出a=﹣1,利用直线斜率的几何意义进行求解即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}满足an+1+an=92n1 , n∈N* . (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=(n﹣1)an , 数列{bn}的前n项和为Sn , 若不等式Sn>kan+16n﹣26对一切n∈N*恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲抛掷均匀硬币2017次,乙抛掷均匀硬币2016次,下列四个随机事件的概率是0.5的是( )
①甲抛出正面次数比乙抛出正面次数多;
②甲抛出反面次数比乙抛出正面次数少;
③甲抛出反面次数比甲抛出正面次数多;
④乙抛出正面次数与乙抛出反面次数一样多.
A.①②
B.①③
C.②③
D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,AD是角A的平分线.
(1)用正弦定理或余弦定理证明:
(2)已知AB=2.BC=4, ,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的不等式的解集为 , 且函数在区间上不是单调函数,则实数m的取值范围为 ( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题一定正确的是(
A.在等差数列{an}中,若ap+aq=ar+aδ , 则p+q=r+δ
B.已知数列{an}的前n项和为Sn , 若{an}是等比数列,则Sk , S2k﹣Sk , S3k﹣S2k也是等比数列
C.在数列{an}中,若ap+aq=2ar , 则ap , ar , aq成等差数列
D.在数列{an}中,若ap?aq=a ,则ap , ar , aq成等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f(﹣x)=﹣f(x);当x> 时,f(x+ )=f(x﹣ ).则f(6)=(  )
A.﹣2
B.﹣1
C.0
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两名运动员进行射击训练,已知他们击中目标的环数均稳定在7,8,9,10环,且每次射击成绩互不影响,射击环数的频率分布表如表:
甲运动员

射击环数

频数

频率

7

10

8

10

9

x

10

30

y

合计

100

1

乙运动员

射击环数

频数

频率

7

6

8

10

9

z

0.4

10

合计

80

如果将频率视为概率,回答下面的问题:
(1)写出x,y,z的值;
(2)求甲运动员在三次射击中,至少有一次命中9环(含9环)以上的概率;
(3)若甲运动员射击2次,乙运动员射击1次,用ξ表示这三次中射击击中9环的次数,求ξ的概率分布列及Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+alnx
(1)当a=﹣1时,求函数的单调区间和极值
(2)若f(x)在[1,+∞)上是增函数,求实数a的取值范围.

查看答案和解析>>

同步练习册答案