精英家教网 > 高中数学 > 题目详情
5.如果函数f(x)=(a2-2)x在R上是减函数,那么实数a的取值范围是(  )
A.|a|>$\sqrt{2}$B.$\sqrt{2}$<|a|<$\sqrt{3}$C.|a|>$\sqrt{3}$D.|a|<3

分析 根据指数函数的单调性便可得到0<a2-2<1,解该不等式便可得出|a|的范围,从而找出正确选项.

解答 解:f(x)在R是减函数;
∴0<a2-2<1;
∴2<a2<3;
∴$\sqrt{2}<|a|<\sqrt{3}$.
故选B.

点评 考查指数函数的单调性,以及不等式的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.不等式$\frac{1}{x-2}$>1的解集为{x|2<x<3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=log3x+$\frac{1}{2}$的定义域为[1,9]求y=[f(x)]2-f(x2)的最大、最小值及相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(文科)如图,已知抛物线C:y=$\frac{1}{4}$x2,点P(x0,y0)为抛物线上一点,y0∈[3,5],圆F方程为x2+(y-1)2=1,过点P作圆F的两条切线PA,PB分别交x轴于点M,N,切点分别为A,B.
①求四边形PAFB面积的最大值.
②求线段MN长度的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.总体由编号为01,02,…,29,30的30个个体组成.利用下面的随机数表选取4个个体,选取方法是如下从随机数表第2行的第2列数字0开始由左到右依次选取两个数字,则选出来的第3个个体的编号为20.
78 16 65 72 08  02 63 14 07 02  43 69 69 38 74
32 04 94 23 49  55 80 20 36 35  48 69 97 28 01

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知△ABC中,cosB=$\frac{4\sqrt{3}}{7}$,BC=3,$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{DC}$,∠ADC=$\frac{π}{3}$.
(1)求AD的长;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.由曲线y=x2和直线x=0,x=2,y=t2,t∈[0,2]围成的封闭图形的面积记为S.
(1)用t表示S.
(2)求S的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.集合A={0,2,a},B={1,16},若A∪B={0,1,2,4,16},则a的值为(  )
A.0B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知$\overrightarrow{m}$=(2-sin(2x+$\frac{π}{6}$),-2),$\overrightarrow{n}$=(1,sin2x),f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,(x∈[0,$\frac{π}{2}$])
(1)求函数f(x)的值域;
(2)设△ABC的内角A,B,C的对边长分别为a,b,c,若f($\frac{B}{2}$)=1,b=1,c=$\sqrt{3}$,求a的值.

查看答案和解析>>

同步练习册答案