精英家教网 > 高中数学 > 题目详情

【题目】命题p:关于x的不等式x2+2ax+4>0对一切x∈R恒成立;命题q:函数f(x)=lagax在(0,+∞)上递增,若p∨q为真,而p∧q为假,求实数a的取值范围.

【答案】解:命题p:关于x的不等式x2+2ax+4>0对一切x∈R恒成立;
①若命题p正确,则△=(2a)2﹣42<0,即﹣2<a<2;
②命题q:函数f(x)=logax在(0,+∞)上递增a>1,
∵p∨q为真,而p∧q为假,
∴p、q一真一假,
当p真q假时,有
∴﹣2<a≤1;
当p假q真时,有
∴a≥2
∴综上所述,﹣2<a≤1或a≥2.
即实数a的取值范围为(﹣2,1]∪[2,+∞).
【解析】依题意,可分别求得p真、q真时m的取值范围,再由p∨q为真,而p∧q为假求得实数a的取值范围即可.
【考点精析】利用复合命题的真假对题目进行判断即可得到答案,需要熟知“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求曲线在点处的切线方程;

(2)讨论函数的单调性;

(3)若函数处取得极小值,设此时函数的极大值为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】结合命题函数上是减函数;命题函数的值域为.

(Ⅰ)若为真命题,求实数的取值范围;

(Ⅱ)如果为真命题, 为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若,讨论的单调性;

(Ⅱ)若函数的图象上存在不同的两点,使得直线的斜率成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是等比数列,a1=2,a3=18.数列{bn}是等差数列,b1=2,b1+b2+b3+b4=a1+a2+a3>20.
(1)求数列{an},{bn}的通项公式;
(2)设Pn=b1+b4+b7+…+b3n2 , Qn=b10+b12+b14+…+b2n+8 , 其中n=1,2,3,….试比较Pn与Qn的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=log2(x2﹣3x+2)的递减区间是(
A.(﹣∞,1)
B.(2,+∞)
C.(﹣∞,
D.( ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在矩形中, 是边的中点,如图(1),将沿直线翻折到的位置,使,如图(2).

(Ⅰ)求证:平面平面

(Ⅱ)已知 分别是线段 上的点,且 平面,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A,B,C是△ABC的三个内角.
(1)3cos(B﹣C)﹣1=6cosBcosC,求cosA的值;
(2)若sin(A+ )=2cosA,求A.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知0<k<4,直线l1:kx﹣2y﹣2k+8=0和直线l:2x+k2y﹣4k2﹣4=0与两坐标轴围成一个四边形,则使得这个四边形面积最小的k值为

查看答案和解析>>

同步练习册答案