精英家教网 > 高中数学 > 题目详情
已知a为实数,函数f(x)=(x2+1)(x+a).
(1)若f'(-1)=0,求函数y=f(x)在[-,1]上的最大值和最小值;
(2)若函数f(x)的图象上有与x轴平行的切线,求a的取值范围.
【答案】分析:(1)利用f'(-1)=0,可求得函数解析式,进而可研究函数的单调性,从而确定极值,进而可知最值;
(2)根据切线与横轴平行,对函数求导,使得到函数等于0有实根,得到关于一元二次方程的判别式,求出结果.
解答:解:(1)∵f'(-1)=0,∴3-2a+1=0,即a=2.         …(2分)

由f'(x)>0,得x<-1或;                     …(4分)
由f'(x)<0,得.因此,函数f(x)的单调增区间为
单调减区间为.                                   …(6分)
f(x)在x=-1取得极大值为f(-1)=2;f(x)在取得极小值为
由∵,f(1)=6且
∴f(x)在[-,1]上的最大值为f(1)=6,最小值为.   …(8分)
(2)∵f(x)=x3+ax2+x+a,∴f'(x)=3x2+2ax+1.
∵函数f(x)的图象上有与x轴平行的切线,∴f'(x)=0有实数解.   …(10分)
∴△=4a2-4×3×1≥0,∴a2≥3,即 
因此,所求实数a的取值范围是.             …(12分)
点评:本题考查函数的极值点应用,考查利用导数求函数的最值,考查学生分析解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、已知a为实数,函数f(x)=ex(x2-ax+a).
(Ⅰ)求f′(0)的值;
(Ⅱ)若a>2,求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a为实数,函数f(x)=x3+ax2+
3
2
x+
3
2
a

(1)若函数f(x)的图象上有与x轴平行的切线,求a的取值范围;
(2)若f'(-1)=0,对任意x1,x2∈[-1,0],不等式|f(x1)-f(x2)|≤m恒成立,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a为实数,函数f(x)=
1
1-ax
,g(x)=(1+ax)ex,记F(x)=f(x)•g(x).
(1)若函数f(x)在点(0,1)处的切线方程为x+y-1=0,求a的值;
(2)若a=1,求函数g(x)的最小值;
(3)当a=-
1
2
时,解不等式F(x)<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a为实数,函数f(x)=(x2+1)(x+a).
(1)若f'(-1)=0,求函数y=f(x)在[-
32
,1]上的最大值和最小值;
(2)若函数f(x)的图象上有与x轴平行的切线,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•湖北模拟)已知a为实数,函数f(x)=(x2+
3
2
)(x+a)

(I)若函数f(x)的图象上有与x轴平行的切线,求a的取值范围;
(II)当a=
9
4
时,对任意x1,x2∈[-1,0],不等式|f(x1)-f(x2)|≤m恒成立,试求m的取值范围.

查看答案和解析>>

同步练习册答案