精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期为π,且其图象向左平移 个单位后得到函数g(x)=cosωx的图象,则函数f(x)的图象(
A.关于直线x= 对称
B.关于直线x= 对称
C.关于点( ,0)对称
D.关于点( ,0)对称

【答案】C
【解析】解:∵函数f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期为π,∴ =π,∴ω=2.
把其图象向左平移 个单位后得到函数g(x)=cosωx=sin(2x+ +φ)的图象,
+φ=kπ+ ,k∈Z,∴φ=﹣ ,∴f(x)=sin(2x﹣ ).
由于当x= 时,函数f(x)=0,故A不满足条件,而C满足条件;
令x= ,求得函数f(x)=sin = ,故B、D不满足条件,
故选:C.
利用正弦函数的周期性、函数y=Asin(ωx+φ)的图象变换规律、诱导公式,求得f(x)的解析式,再利用正弦函数的图象的对称性,得出结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线C的极坐标方程是ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数).

(1)写出直线l的普通方程与曲线C的直角坐标方程;

(2)设曲线C经过伸缩变换得到曲线,设M(x,y)为上任意一点,求的最小值,并求相应的点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某贫困地区有1500户居民,其中平原地区1050户,山区450户,为调查该地区2017年家庭收入情况,从而更好地实施“精准扶贫”,采用分层抽样的方法,收集了150户家庭2017年年收入的样本数据(单位:万元)

(I)应收集多少户山区家庭的样本数据?

(Ⅱ)根据这150个样本数据,得到2017年家庭收入的频率分布直方图(如图所示),其中样本数据分组区间为, , , ,,.如果将频率率视为概率,估计该地区2017年家庭收入超过1.5万元的概率;

(Ⅲ)样本数据中,由5户山区家庭的年收入超过2万元,请完成2017年家庭收入与地区的列联表,并判断是否有90%的把握认为“该地区2017年家庭年收入与地区有关”?

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

超过2万元

不超过2万元

总计

平原地区

山区

5

总计

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线经过点,且圆上到直线距离为的点恰好有个,满足条件的直线有( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题:①函数的值域是

②为了得到函数的图象,只需把函数图象上的所有点向右平移个单位长度;

③当时,幂函数的图象都是一条直线;

④已知函数,若互不相等,且,则的取值范围是.

其中正确的命题个数为( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象过点.

(1)求的值并求函数的值域;

(2)若关于的方程有实根,求实数的取值范围;

(3)若函数,则是否存在实数,使得函数的最大值为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个五个命题:

①“”是“”的充要条件

②对于命题,使得,则,均有

③命题“若,则方程有实数根”的逆否命题为:“若方程

没有实数根,则”;

④函数只有个零点;

使是幂函数,且在上单调递减.

其中是真命题的个数为:

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数上存在满足,则称函数是在上的“双中值函数”,已知函数上的“双中值函数”,则函数的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若在区间[01]上有最大值1和最小值-2.求ab的值;

2)在(1)条件下,若在区间上,不等式fx 恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案