分析 根据函数的奇偶性先求出函数在(-1,1)上为减函数,结合函数的奇偶性和单调性将不等式进行转化即可得到结论.
解答 解:∵f(1-a)+f(1-a2)<0,
∴f(1-a)<-f(1-a2),
又∵f(x)是奇函数,则-f(1-a2)=f(a2-1),
∴f(1-a)<f(a2-1),
又∵f(x)在区间[0,1)上是减函数,
则f(x)在(-1,1)上是减函数,
∴有1-a>a2-1;
又∵函数的定义域为(-1,1);
∴-1<1-a<1,-1<1-a2<1;
综合有$\left\{\begin{array}{l}{-1<1-a<1}\\{-1<1-{a}^{2}<1}\\{1-a>{a}^{2}-1}\end{array}\right.$,解可得0<a<1;
故a的取值范围为(0,1).
点评 本题考查不等式的求解,利用奇偶性与单调性的综合,将不等式进行转化是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com