精英家教网 > 高中数学 > 题目详情
(2013•崇明县二模)设M为平面内一些向量组成的集合,若对任意正实数λ和向量
a
∈M,都有λ
a
M,则称M为“点射域”,在此基础上给出下列四个向量集合:①{(x,y)|y≥x2};②{(x,y)|
x-y≥0
x+y≤0
};③{(x,y)|x2+y2-2y≥0};④{(x,y)|3x2+2y2-12<0}.其中平面向量的集合为“点射域”的序号是
分析:根据题中“点射域”的定义对各个选项依次加以判别,可得①③④都存在反例,说明它们不是“点射域”,而②通过验证可知它符合“点射域”的定义,是正确选项.
解答:解:根据“点射域”的定义,可得向量
a
∈M时,与它共线的向量λ
a
M也成立,
对于①,M={(x,y)|y≥x2}表示终点在抛物线y≥x2上及其张口以内的向量构成的区域,
向量
a
=(1,1)∈M,但3
a
=(3,3)∉M,故它不是“点射域”;
对于②,M={(x,y)|
x-y≥0
x+y≤0
},可得任意正实数λ和向量
a
∈M,都有λ
a
M,故它是“点射域”;
对于③,M={(x,y)|x2+y2-2y≥0},表示终点在圆x2+y2-2y=0上及其外部的向量构成的区域,
向量
a
=(0,2)∈M,但
1
2
a
=(0,1)∉M,故它不是“点射域”;
对于④,M={(x,y)|3x2+2y2-12<0},表示终点在椭圆
y2
6
+
x2
4
=1内部的向量构成的区域,
向量
a
=(1,1)∈M,但3
a
=(3,3)∉M,故它不是“点射域”.
综上所述,满足是“点射域”的区域只有②
故答案为:②
点评:本题给出特殊定义,叫我们判断符合题的选项,着重考查集合与元素的关系和向量的性质等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•崇明县二模)某日用品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5.现从一批该日用品中抽取200件,对其等级系数进行统计分析,得到频率f的分布表如下:
X 1 2 3 4 5
f a 0.2 0.45 0.15 0.1
则在所抽取的200件日用品中,等级系数X=1的件数为
20
20

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•崇明县二模)已知数列{an}是各项均不为0的等差数列,公差为d,Sn为其前n项和,且满足an2=S2n-1,n∈N*.数列{bn}满足bn=
1anan+1
,n∈N*,Tn为数列{bn}的前n项和.
(1)求数列{an}的通项公式an和数列{bn}的前n项和Tn
(2)若对任意的n∈N*,不等式λTn<n+8•(-1)n恒成立,求实数λ的取值范围;
(3)是否存在正整数m,n(1<m<n),使得T1,Tm,Tn成等比数列?若存在,求出所有m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•崇明县二模)设函数 f(x)=
2x      (x≤0)
log2x (x>0)
,函数y=f[f(x)]-1的零点个数为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•崇明县二模)已知函数f(x)=(cos2xcosx+sin2xsinx)sinx,x∈R,则f(x)是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•崇明县二模)在直角△ABC中,∠C=90°,∠A=30°,BC=1,D为斜边AB的中点,则 
AB
CD
=
-1
-1

查看答案和解析>>

同步练习册答案