分析 由原命题的否定为真命题得到?实数x,使得(a-2)x2+2(a-2)x-4<0成立,然后分二次项系数为0和不为0讨论,当二次项系数不为0时,需要二次项系数小于0,且判别式小于0求解.
解答 解:命题“存在实数x,使得(a-2)x2+2(a-2)x-4≥0成立”是假命题,
则其否定为“?实数x,使得(a-2)x2+2(a-2)x-4<0成立”是真命题,
当a=2时,原不等式化为-4<0恒成立;
当a≠2时,则$\left\{\begin{array}{l}{a-2<0}\\{△=4(a-2)^{2}+16(a-2)<0}\end{array}\right.$,解得-2<a<2.
综上,实数a的取值范围是(-2,2].
故答案为:(-2,2].
点评 本题考查命题的真假判断与应用,考查了复合命题的真假判断,训练了不等式恒成立的解法,是中档题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | -$\frac{3}{5}$ | D. | -$\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,0) | B. | (-∞,-2) | C. | (-2,-1) | D. | (-2,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 圆柱的侧面展开图是一个矩形 | |
B. | 圆锥中过圆锥轴的截面是一个等腰三角形 | |
C. | 直角三角形绕它的一边旋转一周而形成的曲面所围成的几何体是一个圆锥 | |
D. | 用一个平面截一个圆柱,所得截面可能是矩形 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com