精英家教网 > 高中数学 > 题目详情

【题目】无穷数列个不同的数组成, 的前项和,若对任意的最大值为__________

【答案】4

【解析】对任意,可得
时, 3

,由,可得数列的前两项为20;或21;或30;或3-1
,由,可得数列的前三项为200;或201
210;或21-1;或300;或30-1;或310;或31-1
,可得数列的前四项为2000;或2001
2010;或201-1;或2100;或210-1
21-10;或21-11;或3000;或300-1
30-10;或30-11;或3-100;或3-101
3-110;或3-11-1

即有 4后一项都为01-1,则k的最大个数为4
不同的四个数均为201-1,或301-1
故答案为4

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点M是圆心为E的圆上的动点,点,线段MF的垂直平分线交EM于点P.

)求动点P的轨迹C的方程;

)过原点O作直线交()中轨迹C于点AB,点D满足,试求四边形AFBD的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=

(1)若对f(x) 恒成立,求的取值范围;

(2)已知常数aR解关于x的不等式f(x) .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,焦点在轴上,离心率,且椭圆经过点,过椭圆的左焦点且不与坐标轴垂直的直线交椭圆两点.

1)求椭圆的方程;

2)设线段的垂直平分线与轴交于点,求的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥A-BCDE中,底面BCDE为直角梯形,CD⊥平面ABC,侧面ABC是等腰直角三角形,∠EBC=ABC=90°BC=CD=2BE=2,点M是棱AD的中点

(I)证明:平面AED⊥平面ACD;

()求锐二面角B-CM-A的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆,动圆与圆内切并且与圆外切,圆心的轨迹为曲线.

(Ⅰ)求的方程;

(Ⅱ)已知曲线轴交于两点,过动点的直线与交于 (不垂直轴),过作直线交于点且交轴于点,若构成以为顶点的等腰三角形,证明:直线 的斜率之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得=80, =20, =184, =720.

(1)求家庭的月储蓄y对月收入x的线性回归方程ybxa

(2)判断变量xy之间是正相关还是负相关;

(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.

附:线性回归方程ybxa中, ab,其中 为样本平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—5:不等式选讲

已知函数(x)=|2x-a|+ |x -1|.

(Ⅰ)当a=3时,求不等式(x)≥2的解集;

(Ⅱ)若(x)≥5-x对恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形与梯形所在的平面互相垂直, , ,点是线段的中点.

(1)求证:

(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案