精英家教网 > 高中数学 > 题目详情

记公差d≠0的等差数列{an}的前n项和为Sn,已知a1=2+S3=12+

(1)求数列{an}的通项公式an及前n项和Sn

(2)记bnan,若自然数n1n2,…,nk,…满足1≤n1n2<…<nk<…,并且,…,,…成等比数列,其中n1=1,n2=3,求nk(用k表示);

(3)试问:在数列{an}中是否存在三项arasat(rstrst∈N*)恰好成等比数列?若存在,求出此三项;若不存在,请说明理由.

解:(1)因为a1=2+S3=3a1+3d=12+,所以d=2.…………………2分

所以ana1+(n-1)d=2n,……………………………………………………………3分

Snn2+(+1)n.………………………………………………………………5分

(2)因为bnan=2n,所以=2nk.………………………………………………7分

又因为数列{}的首项,公比,所以.…………9分

所以2nk,即nk.……………………………………………………………10分

(3)假设存在三项arasat成等比数列,则

即有,整理得.…………12分

       若,则,因为rst∈N*,所以是有理数,这与为无理数矛盾;………………………………………………………………………………14分

       若,则,从而可得rst,这与rst矛盾.

       综上可知,不存在满足题意的三项arasat.……………………………………………16分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

记公差d≠0的等差数列{an}的前n项和为Sn,已知a1=2+
2
,S3=12+3
2

(1)求数列{an}的通项公式an及前n项和Sn
(2)记bn=an-
2
,若自然数n1,n2,…,nk,…满足1≤n1<n2<…<nk<…,并且b n1,b n2,…,b nk,…成等比数列,其中n1=1,n2=3,求nk(用k表示);
(3)试问:在数列{an}中是否存在三项ar,as,at(r<s<t,r,s,t∈N*)恰好成等比数列?若存在,求出此三项;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:江苏省南京市四校2012届高三12月月考数学试题 题型:044

记公差d≠0的等差数列{an}的前n项和为Sn,已知a1=2+S3=12+3

(1)求数列{an}的通项公式an及前n项和Sn

(2)记bnan,若自然数n1n2,…,nk,…满足1≤n1n2<…<nk<…,并且,…,,…成等比数列,其中n1=1,n2=3,求nk(用k表示);

(3)试问:在数列{an}中是否存在三项arasat(rstrstN*)恰好成等比数列?若存在,求出此三项;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省高三元月双周练习数学试卷 题型:解答题

(本小题满分16分)记公差d≠0的等差数列{an}的前n项和为Sn,已知a1=2+,S3=12+

(1)求数列{an}的通项公式an及前n项和Sn

(2)记bn=an,若自然数n1,n2,…,nk,…满足1≤n1<n2<…<nk<…,并且,…,,…成等比数列,其中n1=1,n2=3,求nk(用k表示);

(3)试问:在数列{an}中是否存在三项ar,as,at(r<s<t,r,s,t∈N*)恰好成等比数列?若存在,求出此三项;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

记公差d≠0的等差数列{an}的前n项和为Sn,已知a1=2+
2
,S3=12+3
2

(1)求数列{an}的通项公式an及前n项和Sn
(2)记bn=an-
2
,若自然数n1,n2,…,nk,…满足1≤n1<n2<…<nk<…,并且b n1,b n2,…,b nk,…成等比数列,其中n1=1,n2=3,求nk(用k表示);
(3)试问:在数列{an}中是否存在三项ar,as,at(r<s<t,r,s,t∈N*)恰好成等比数列?若存在,求出此三项;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案