【题目】设函数,其中.
(1)若,求过点且与曲线相切的直线方程;
(2)若函数有两个零点.
①求的取值范围;
②求证: .
【答案】(1) y=-x-1 (2)①(0,e)②见解析
【解析】试题分析:(1) 当a=0时,f(x)=-1-lnx,f ′(x)=-.设切点为T(x0,-1-lnx0),得到切线方程,由于过,得到关于x0的方程,解之即可得到与曲线相切的直线方程;
(2)①要使函数f(x)有两个零点,只需考虑函数的最值与零的关系即可;②由x1,x2是函数f(x)的两个零点(不妨设x1<x2),得 两式相减,得 a(x12-x22)-ln=0,即a(x1+x2) (x1-x2)-ln=0.f ′(x1)+f ′(x2)<0等价于ax1-+ax2-<0,即a(x1+x2)--<0,把a换掉构造新函数即可.
试题解析:
(1)当a=0时,f(x)=-1-lnx,f ′(x)=-.
设切点为T(x0,-1-lnx0),
则切线方程为:y+1+lnx0=- ( x-).
因为切线过点(0,-1),所以 -1+1+ln x0=- (0-x0),解得x0=e.
所以所求切线方程为y=-x-1.
(2)① f ′(x)=ax-=,x>0.
(i) 若a≤0,则f ′(x)<0,所以函数f(x)在(0,+∞)上单调递减,
从而函数f(x)在(0,+∞)上至多有1个零点,不合题意.
(ii)若a>0,由f ′(x)=0,解得x=.
当0<x<时, f ′(x)<0,函数f(x)单调递减;当x>时, f ′(x)>0,f(x)单调递增,
所以f(x)min=f()=-ln-1=--ln.
要使函数f(x)有两个零点,首先 --ln<0,解得0<a<e
当0<a<e时, >>.
因为f()=>0,故f()·f()<0.
又函数f(x)在(0, )上单调递减,且其图像在(0, )上不间断,
所以函数f(x)在区间(0, )内恰有1个零点.
考察函数g(x)=x-1-lnx,则g′(x)=1-=.
当x∈(0,1)时,g′(x)<0,函数g(x)在(0,1)上单调递减;
当x∈(1,+∞)时,g′(x)>0,函数g(x)在(1,+∞)上单调递增,
所以g(x)≥g(1)=0,故f()=-1-ln≥0.
因为-=>0,故>.
因为f()·f()≤0,且f(x)在(,+∞)上单调递增,其图像在(,+∞)上不间断,
所以函数f(x)在区间(, ] 上恰有1个零点,即在(,+∞)上恰有1个零点.
综上所述,a的取值范围是(0,e).
②由x1,x2是函数f(x)的两个零点(不妨设x1<x2),得
两式相减,得 a(x12-x22)-ln=0,即a(x1+x2) (x1-x2)-ln=0,
所以a(x1+x2)=.
f ′(x1)+f ′(x2)<0等价于ax1-+ax2-<0,即a(x1+x2)--<0,
即--<0,即2ln+->0.
设h(x)=2lnx+-x,x∈(0,1).则h′(x)=--1==-<0,
所以函数h(x)在(0,1)单调递减,所以h(x)>h(1)=0.
因为∈(0,1),所以2ln+->0,
科目:高中数学 来源: 题型:
【题目】[2018·沧州质检]对于椭圆,有如下性质:若点是椭圆上的点,则椭圆在该点处的切线方程为.利用此结论解答下列问题.点是椭圆上的点,并且椭圆在点处的切线斜率为.
(1)求椭圆的标准方程;
(2)若动点在直线上,经过点的直线,与椭圆相切,切点分别为,.求证:直线必经过一定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】盒子中装有四张大小形状均相同的卡片,卡片上分别标有数其中是虚数单位.称“从盒中随机抽取一张,记下卡片上的数后并放回”为一次试验(设每次试验的结果互不影响).
(1)求事件 “在一次试验中,得到的数为虚数”的概率与事件 “在四次试验中,
至少有两次得到虚数” 的概率;
(2)在两次试验中,记两次得到的数分别为,求随机变量的分布列与数学期望
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥中,平面平面,为等边三角形,,且,O,M分别为,的中点.
(Ⅰ)求证:平面;
(Ⅱ)设是线段上一点,满足平面平面,试说明点的位置;
(Ⅲ)求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数的最大值为3,其图象相邻两条对称轴之间的距离为.
(Ⅰ)求函数的解析式和当时的单调减区间;
(Ⅱ)的图象向右平行移动个长度单位,再向下平移1个长度单位,得到的图象,用“五点法”作出在内的大致图象.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,且短轴长为2.
(1)求椭圆的标准方程;
(2)已知分别为椭圆的左右顶点, ,,且,直线与分别与椭圆交于两点,
(i)用表示点的纵坐标;
(ii)若面积是面积的5倍,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com