精英家教网 > 高中数学 > 题目详情
20.已知3sinα-cosα=0,7sinβ+cosβ=0,且0<α<$\frac{π}{2}$<β<π,则2α-β的值为(  )
A.$\frac{5π}{4}$B.-$\frac{π}{3}$C.$\frac{π}{4}$D.-$\frac{3}{4}$π

分析 由3sinα-cosα=0,求出tanα的值,再由二倍角的正切公式求出tan2α的值,由7sinβ+cosβ=0,求出tanβ的值,根据角的范围得到2α-β∈(-π,0),再由两角和与差的正切函数公式化简代值得答案.

解答 解:∵3sinα-cosα=0,
∴$tanα=\frac{1}{3}$.
$tan2α=\frac{2tanα}{1-ta{n}^{2}α}=\frac{2×\frac{1}{3}}{1-(\frac{1}{3})^{2}}=\frac{3}{4}$.
∵7sinβ+cosβ=0,
∴$tanβ=-\frac{1}{7}$.
∵0<α<$\frac{π}{2}$<β<π,
∴2α∈(0,π),2α-β∈(-π,0),
$tan(2α-β)=\frac{tan2α-tanβ}{1+tan2αtanβ}$=$\frac{\frac{3}{4}+\frac{1}{7}}{1+(\frac{3}{4})×(-\frac{1}{7})}=1$.
则2α-β的值为:$-\frac{3π}{4}$.
故选:D.

点评 本题主要考查了二倍角的正切公式的应用,考查了两角和与差的正切函数公式,注意讨论角的范围,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知命题p:方程$\frac{x^2}{2m}+\frac{y^2}{1-m}$=1表示焦点在x轴上的椭圆,命题q:方程$\frac{x^2}{m}-\frac{y^2}{1-m}$=1表示双曲线,则p是q的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某公共汽车站,每隔15分钟有一辆车出发,并且出发前在车站停靠3分钟,则某人随机到达该站的候车时间不超过10分钟的概率为(  )
A.$\frac{1}{5}$B.$\frac{2}{15}$C.$\frac{13}{15}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若以双曲线$\frac{x^2}{a^2}$-y2=1(a>0)的左、右焦点和点(1,2$\sqrt{2}$)为顶点的三角形为直角三角形,则此双曲线的焦距长为(  )
A.10B.8C.2$\sqrt{5}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若定义在R上的函数f(x)满足f(x)=-f(x+$\frac{3}{2}$),且f(1)=1,则f(2017)等于(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若实数x,y满足约束条件$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≤0}\\{x-3y+3≤0}\end{array}\right.$,则z=4x+8y的最小值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.底面半径为1高为3的圆锥的体积为π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.△ABC的外接圆的圆心为O,半径为1,2$\overrightarrow{AO}$=$\overrightarrow{AB}$+$\overrightarrow{AC}$,且|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|,则$\overrightarrow{BA}$•$\overrightarrow{BC}$=(  )
A.1B.2C.$\sqrt{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.化简$({a}^{3}{b}^{\frac{1}{2}})^{\frac{1}{2}}$÷(${a}^{\frac{1}{2}}$b${\;}^{\frac{1}{4}}$)(a>0,b>0)结果为(  )
A.aB.bC.$\frac{a}{b}$D.$\frac{b}{a}$

查看答案和解析>>

同步练习册答案