精英家教网 > 高中数学 > 题目详情
5.求值:
(1)sin6°sin42°sin66°sin78°;
(2)$\frac{sin50°(1+\sqrt{3}tan10°)-cos20°}{cos80°\sqrt{1-cos20°}}$.

分析 (1)直接利用诱导公式化简函数为余弦函数,然后利用二倍角的正弦函数求解即可.
(2)利用三角恒等变换,先将所求关系式中的“切”化“弦”,再通分化简,利用两角和的正弦与二倍角的正弦及升幂公式、诱导公式即可求得答案.

解答 解:(1)sin6°sin42°sin66°sin78°
=sin6°cos12°cos24°cos48°
=$\frac{{2}^{4}cos6°sin6°cos12°cos24°cos48°}{{2}^{4}cos6°}$
=$\frac{8sin12°cos12°cos24°cos48°}{16cos6°}$
=$\frac{4sin24°cos24°cos48°}{16cos6°}$
=$\frac{2sin48°cos48°}{16cos6°}$
=$\frac{sin96°}{16cos6°}$
=$\frac{1}{16}$.
(2)原式=$\frac{sin50°(1+\sqrt{3}\frac{sin10°}{cos10°})-cos20°}{cos80°\sqrt{1-cos20°}}$
=$\frac{sin50°\frac{2sin(10°+30°)}{cos10°}-cos20°}{cos80°\sqrt{2{sin}^{2}10°}}$
=$\frac{\frac{sin80°}{cos10°}-cos20°}{\sqrt{2}{sin}^{2}10°}$
=$\frac{1-(1-2{sin}^{2}10)}{\sqrt{2}{sin}^{2}10°}$
=$\sqrt{2}$.

点评 本题(l)考查诱导公式及二倍角的正弦函数公式,是一道中档题.此题的突破点是分子变形后给分子分母都乘以16cos6°以至于造成了一系列的连锁反应.(2)考查三角函数的化简求值,考查两角和的正弦与二倍角的正弦及升幂公式、诱导公式的综合运用,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知角α的终边经过点P(-1,$\sqrt{3}$),那么sinα•cosα+tanα=-$\frac{5\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.解不等式$\frac{4}{(2sinx+1)^{3}}+\frac{5}{2sinx+1}-4si{n}^{3}$x-5sinx>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在平面直角坐标系中,AB=AC,A(0,3),B(-4,0),C(a,-1)(a>0),则向量$\overrightarrow{BC}$在向量$\overrightarrow{AB}$上的投影为(  )
A.-5B.-3C.3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A,B,C的对边分别为a,b,c,已知sin(A+$\frac{π}{6}$)=$\frac{a+b}{2c}$.
(1)求角C;
(2)若c=2,求AB边上的中线长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数y=$\frac{{2}^{x}sin(\frac{5π}{2}+6x)}{{4}^{x}-1}$的图象大致为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.等比数列{an}的前n项和为Sn,已知对任意的n∈N+,点(n,Sn),均在函数y=2x+r(r为常数)的图象上.
(1)求r的值;
(2)记bn=$\frac{n+1}{4{a}_{n}}$(n∈N+)求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知sinαcosα=$\frac{1}{3}$,求(sinα-cosα)2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知x,y,a,b为均实数,且满足x2+y2=4,a2+b2=9,则ax+by的最大值m与最小值n的乘积mn=-36.

查看答案和解析>>

同步练习册答案