精英家教网 > 高中数学 > 题目详情
17.已知二项式(${(\root{3}{x}-\frac{1}{{2\root{3}{x}}})^n}$的展开式中,前三项系数的绝对值成等差数列.
(1)求展开式的第三项;
(2)求二项式系数最大的项
(3)求二项展开式的二项式系数和以及其所有项的系数和.

分析 (1)由条件求得n=8,利用通项公式可得展开式的第三项.
(2)根据二项式系数的性质,求得二项式系数最大的项.
(3)根据二项展开式的二项式系数和为2n 得出结论,令x=1,可得其所有项的系数和.

解答 解:(1)二项式(${(\root{3}{x}-\frac{1}{{2\root{3}{x}}})^n}$的展开式中,前三项系数的绝对值成等差数列,
可得2${C}_{n}^{1}$•$\frac{1}{2}$=${C}_{n}^{0}$+${C}_{n}^{2}$•$\frac{1}{4}$,求得n=1(舍去),或 n=8,
故展开式的第三项为T3=${C}_{8}^{2}$•${(\frac{1}{2})}^{2}$•${x}^{\frac{4}{3}}$=7${x}^{\frac{4}{3}}$.
(2)第r+1项的二项式系数为 Tr+1=${C}_{8}^{r}$,故第5项的二项式系数最大,此时,r=4.
(3)二项展开式的二项式系数和为28=256,令x=1,可得其所有项的系数和${(\frac{1}{2})}^{8}$=$\frac{1}{256}$.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\sqrt{3}$sin(2ωx-$\frac{π}{3}$)+b,且函数的对称中心到对称轴的最小距离为$\frac{π}{4}$,当x∈[0,$\frac{π}{3}$]时,f(x)的最大值为1
(1)求函数f(x)的解析式
(2)若f(x)-3≤m≤f(x)+3在x∈[0,$\frac{π}{3}$]上恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.计算$arcsin\frac{{\sqrt{2}}}{2}$+arctan(-1)+$arccos(-\frac{{\sqrt{3}}}{2})$的值为(  )
A.-$\frac{π}{3}$B.-$\frac{π}{6}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.过原点且倾斜角为60°的直线被圆(x-2)2+y2=4所截得的弦长为(  )
A.$\sqrt{3}$B.2C.$\sqrt{6}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列结论正确的个数是(  )
①已知复数z=i(1-i),z在复平面内对应的点位于第四象限;
②不等式x-2y+6>0表示的平面区域是直线x-2y+6=0的右下方;
③命题p:“?x0∈R,x${\;}_{0}^{2}$-x0-1>0”的否定?p:“?x∈R,x2-x-1≤0”.
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.由命题“?x∈R,使x2+mx+1<0”是假命题,则实数m的取值范围是[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=lnx+2x-6的零点在区间(a,a+1),a∈Z内,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=alnx+$\frac{1}{2}$x2,a∈R.
(1)若a=-1时,讨论函数f(x)的单调性.
(2)当x≥1时,f(x)>lnx恒成立,求a的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2x+2-x,判断f(x)在[0,+∞)上的单调性.

查看答案和解析>>

同步练习册答案