6£®¶ÔÓÚ¶¨ÒåÔÚÇø¼äDÉϵĺ¯Êýy=f£¨x£©£¬Èô´æÔÚx0¡ÊD£¬¶ÔÈÎÒâµÄx¡ÊD£¬¶¼ÓÐf£¨x£©¡Ýf£¨x0£©£¬Ôò³Æº¯Êýf£¨x£©ÔÚÇø¼äDÉÏÓС°Ï½硱£¬°Ñf£¨x0£©³ÆΪº¯Êýf£¨x£©ÔÚDÉϵġ°Ï½硱£®
£¨1£©·Ö±ðÅжÏÏÂÁк¯ÊýÊÇ·ñÓС°Ï½硱£¿Èç¹ûÓУ¬Ð´³ö¡°Ï½硱£¬·ñÔòÇë˵Ã÷ÀíÓÉ£»f1£¨x£©=1-2x£¨x£¾0£©£¬f2£¨x£©=x+$\frac{16}{x}$£¨0£¼x¡Ü5£©£®
£¨2£©ÇëÄãÀà±Èº¯ÊýÓС°Ï½硱µÄ¶¨Ò壬д³öº¯Êýf£¨x£©ÔÚÇø¼äDÉÏÓС°ÉϽ硱µÄ¶¨Ò壻²¢ÅжϺ¯Êýf2£¨x£©=|x-$\frac{16}{x}$|£¨0£¼x¡Ü5£©ÊÇ·ñÓС°ÉϽ硱£¿ËµÃ÷ÀíÓÉ£»
£¨3£©Èôº¯Êýf£¨x£©ÔÚÇø¼äDÉϼÈÓС°ÉϽ硱ÓÖÓС°Ï½硱£¬Ôò³Æº¯Êýf£¨x£©ÊÇÇø¼äDÉϵġ°Óн纯Êý¡±£¬°Ñ¡°ÉϽ硱¼õÈ¥¡°Ï½硱µÄ²î³ÆΪº¯Êýf£¨x£©ÔÚDÉϵġ°·ù¶ÈM¡±£®
¶ÔÓÚʵÊýa£¬ÊÔ̽¾¿º¯ÊýF£¨x£©=x|x-2a|+3£¨a¡Ü$\frac{1}{2}$£©ÊÇ·ñÊÇ[1£¬2]Éϵġ°Óн纯Êý¡±£¿Èç¹ûÊÇ£¬Çó³ö¡°·ù¶ÈM¡±µÄÖµ£®

·ÖÎö £¨1£©¸ù¾Ýf£¨x0£©³ÆΪº¯Êýf£¨x£©ÔÚDÉϵġ°Ï½硱µÄ¶¨Ò壬Åжϼ´¿É£»
£¨2£©Àà±Èº¯ÊýÓС°Ï½硱µÄ¶¨Ò壬д³öº¯Êýf£¨x£©ÔÚÇø¼äDÉÏÓС°ÉϽ硱µÄ¶¨Ò壻ͨ¹ýÌÖÂÛxµÄ·¶Î§£¬ÅжϺ¯Êýf2£¨x£©ÊÇ·ñÓС°ÉϽ硱¼´¿É£»
£¨3£©Çó³öF£¨x£©µÄ·Ö¶Îº¯Êýʽ£¬ÌÖÂÛ¢Ùµ±a¡Ü0ʱ£¬¢Úµ±0£¼a¡Ü$\frac{1}{2}$ʱ£¬º¯ÊýµÄ½âÎöʽºÍ¶Ô³ÆÖᣬÓëÇø¼äµÄ¹Øϵ£¬Óɵ¥µ÷ÐÔ¼´¿ÉµÃµ½×îÖµºÍ·ù¶ÈMµÄÖµ£®

½â´ð ½â£º£¨1£©¡ßf1£¨x£©=1-2x£¨x£¾0£©£¬¡àf1£¨x£©£¼1£¬ÎÞ¡°Ï½硱£¬
¡ßf2£¨x£©=x+$\frac{16}{x}$¡Ý2$\sqrt{x•\frac{16}{x}}$=8£¬µ±ÇÒ½öµ±x=4ʱ¡°=¡±³ÉÁ¢£¨0£¼x¡Ü5£©£®
¡àf2£¨x£©=x+$\frac{16}{x}$£¨0£¼x¡Ü5£©ÓС°Ï½硱£»
£¨2£©¶ÔÓÚ¶¨ÒåÔÚÇø¼äDÉϵĺ¯Êýy=f£¨x£©£¬Èô´æÔÚx0¡ÊD£¬¶ÔÈÎÒâµÄx¡ÊD£¬¶¼ÓÐf£¨x£©¡Üf£¨x0£©£¬
Ôò³Æº¯Êýf£¨x£©ÔÚÇø¼äDÉÏÓС°ÉϽ硱£¬°Ñf£¨x0£©³ÆΪº¯Êýf£¨x£©ÔÚDÉϵġ°ÉϽ硱£®
f2£¨x£©=|x-$\frac{16}{x}$|£¨0£¼x¡Ü5£©£¬
0£¼x£¼4ʱ£¬x-$\frac{16}{x}$£¼0£¬
f2£¨x£©=$\frac{16}{x}$-x£¬f2¡ä£¨x£©=-$\frac{16}{{x}^{2}}$-1£¼0£¬
f2£¨x£©ÔÚ£¨0£¬4£©µÝ¼õ£¬
x¡ú0ʱ£¬f2£¨x£©¡ú+¡Þ£¬ÎÞ¡°ÉϽ硱£¬
4¡Üx¡Ü5ʱ£¬x-$\frac{16}{x}$£¾0£¬
f2£¨x£©=x-$\frac{16}{x}$£¬f2¡ä£¨x£©=1+$\frac{16}{{x}^{2}}$£¾0£¬
f2£¨x£©=x-$\frac{16}{x}$ÔÚ[4£¬5]µÝÔö£¬f2£¨x£©¡Üf2£¨5£©=$\frac{9}{5}$£¬
×ÛÉÏ£¬º¯Êýf2£¨x£©=|x-$\frac{16}{x}$|£¨0£¼x¡Ü5£©ÎÞ¡°ÉϽ硱£»
£¨3£©F£¨x£©=x|x-2a|+3=$\left\{\begin{array}{l}{{-x}^{2}+2ax+3£¬x¡Ü2a}\\{{x}^{2}-2ax+3£¬x£¾2a}\end{array}\right.$£¬
¢Ùµ±a¡Ü0ʱ£¬F£¨x£©=x2-2ax+3¶Ô³ÆÖáΪx=a£¬ÔÚ[1£¬2]µÝÔö£¬
F£¨x£©max=F£¨2£©=7-4a£¬F£¨x£©min=F£¨1£©=4-2a£¬
·ù¶ÈM=F£¨2£©-F£¨1£©=3-2a£»
¢Úµ±0£¼a¡Ü$\frac{1}{2}$ʱ£¬F£¨x£©=x2-2ax+3£¬
Çø¼ä[1£¬2]ÔÚ¶Ô³ÆÖáµÄÓұߣ¬ÎªÔöÇø¼ä£¬
F£¨x£©max=F£¨2£©£¬F£¨x£©min=F£¨1£©£¬
·ù¶ÈM=F£¨2£©-F£¨1£©=3-2a£®
×ÛÉϿɵÃÊÇ[1£¬2]Éϵġ°Óн纯Êý¡±£¬
¡°·ù¶ÈM¡±µÄֵΪ3-2a£®

µãÆÀ ±¾Ì⿼²éж¨ÒåµÄÀí½âºÍÓ¦Ó㬿¼²é¶þ´Îº¯ÊýµÄ×îÖµµÄÇ󷨣¬×¢Òâµ¥µ÷ÐÔµÄÔËÓã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®º¯Êýy=x3-3x2-9xͼÏóµÄ¶Ô³ÆÖÐÐÄ×ø±êΪ£¨1£¬-11£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖª¹ØÓÚxµÄ²»µÈʽax2-bx+3£¾0µÄ½â¼¯Îª£¨-3£¬1£©
£¨¢ñ£©ÇóʵÊýa£¬bµÄÖµ£»
£¨¢ò£©½â¹ØÓÚxµÄ²»µÈʽ£º${log_b}£¨{2x-1}£©¡Ü\frac{1}{2^a}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Èôloga3b=-1£¬Ôòa+bµÄ×îСֵΪ$\frac{2\sqrt{3}}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªº¯Êý$f£¨x£©={log_a}\frac{x-1}{x+1}\;£¨{a£¾1}£©$£®
£¨1£©Çó´Ëº¯ÊýµÄ¶¨ÒåÓòD£¬²¢ÅжÏÆäÆæżÐÔ£»
£¨2£©ÊÇ·ñ´æÔÚʵÊýa£¬Ê¹f£¨x£©ÔÚx¡Ê£¨1£¬a£©Ê±µÄÖµÓòΪ£¨-¡Þ£¬-1£©£¿Èô´æÔÚ£¬Çó³öaµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑÖªÃüÌâ¡°ÈÎÒâx¡ÊR£¬x2+2ax+a£¾0¡±ÊÇÕæÃüÌ⣬ÄÇôʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ0£¼a£¼1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®p£º$\left\{\begin{array}{l}a£¾2\;£¬\;\;\\ b=3\;.\end{array}\right.$ÊÇq£º$\left\{\begin{array}{l}a+b£¾5\;£¬\;\;\\ ab£¾6.\end{array}\right.$³ÉÁ¢µÄ£¨¡¡¡¡£©
A£®³ä·Ö·Ç±ØÒªÌõ¼þB£®±ØÒª·Ç³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÔÚ³ÌÐò¿òͼÖУ¬ÒÑÖª£º${f_0}£¨x£©=x{e^x}$£¬ÔòÊä³öµÄÊÇ2012ex+xex£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªx=-2ÊǺ¯Êýf£¨x£©=-x3-2x2+axÒ»¸ö¼«Öµµã£®
£¨1£©ÇóʵÊýaµÄÖµ£»
£¨2£©Èôx¡Ê[-3£¬3]£¬Çóº¯Êýf£¨x£©µÄ×îÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸