分析 (1)设P(x0,y0),则Q(-x0,y0),得到x02-y02=4①,和y0=$\frac{1}{4}$x02,②,构造方程组,解得即可,再根据直线和圆的位置关系即可判断,
(2)分直线l的斜率存在和不存在两种情况讨论,直线和圆的位置关系,设A(x1,y1),B(x2,y2),联立方程组得$\left\{\begin{array}{l}{x=my-3}\\{{x}^{2}+{y}^{2}=1}\end{array}\right.$,得m2的范围,
根据韦达定理得到$\left\{\begin{array}{l}{{y}_{1}+{y}_{2}=\frac{6m}{1+{m}^{2}}}\\{{y}_{1}{y}_{2}=\frac{8}{1+{m}^{2}}}\end{array}\right.$,根据基本不等式和函数的单调性求出$\frac{25}{6}$≤$\frac{9{m}^{2}}{2(1+{m}^{2})}$≤$\frac{9}{2}$,再根据点与点的距离公式,即可求出m的范围.
解答 解:(1)由题意得到F2(0,1),F1(0,-1),
∵抛物线y=$\frac{1}{4}{x}^{2}$关于y轴对称,
∴设P(x0,y0),则Q(-x0,y0),
∴$\overrightarrow{{F}_{1}P}$=(x0,y0+1),则$\overrightarrow{{F}_{2}Q}$=(-x0,y0-1),
又且$\overrightarrow{{F}_{1}P}•\overrightarrow{{F}_{2}Q}$=-5.
∴-x02+y02-1=-5,
即x02-y02=4①,
又点P在抛物线上,
∴y0=$\frac{1}{4}$x02,②,
联立①②易得y0=2,
∴直线m的方程为:y=2,显然直线m与圆相离;
(2)由题意显然l的斜率存在,M(-3,0),
1°当直线l的斜率为0时,B(-1,0),A(1,0),$\overrightarrow{MA}$=(4,0),$\overrightarrow{MB}$=(2,0),
故$\overrightarrow{MA}$=2$\overrightarrow{MB}$,λ=2,满足条件,此时|$\overrightarrow{MA}+\overrightarrow{MB}$|=6,
2°当直线l的斜率为不为0时,设直线l的方程为:x=my-3,
并设A(x1,y1),B(x2,y2),
∴$\overrightarrow{MA}$=(3+x1,y1),$\overrightarrow{MB}$=(3+x2,y2),
∵$\overrightarrow{MA}$=λ$\overrightarrow{MB}$,
∴y1=λy2,
联立方程组得$\left\{\begin{array}{l}{x=my-3}\\{{x}^{2}+{y}^{2}=1}\end{array}\right.$,得(1+m2)y2-6my+8=0,③
由△=36m2-32(1+m2)=4m2-32>0,得m2>8,
且y1,y2是方程③的两根,
∴$\left\{\begin{array}{l}{{y}_{1}+{y}_{2}=\frac{6m}{1+{m}^{2}}}\\{{y}_{1}{y}_{2}=\frac{8}{1+{m}^{2}}}\end{array}\right.$,
∴$\left\{\begin{array}{l}{(1+λ){y}_{2}=\frac{6m}{1+{m}^{2}}}\\{λ{{y}_{2}}^{2}=\frac{8}{1+{m}^{2}}}\end{array}\right.$,
显然$λ{{y}_{2}}^{2}$≠0,
∴$\frac{(1+λ)^{2}}{λ}$=$\frac{9{m}^{2}}{2(1+{m}^{2})}$,
∵$\frac{(1+λ)^{2}}{λ}$=λ+$\frac{1}{λ}$+2在λ∈[$\frac{3}{2}$,2]上是增函数,
∴$\frac{25}{6}$≤$\frac{(1+λ)^{2}}{λ}$=λ+$\frac{1}{λ}$+2≤$\frac{9}{2}$,
即$\frac{25}{6}$≤$\frac{9{m}^{2}}{2(1+{m}^{2})}$≤$\frac{9}{2}$,
解得m2≥$\frac{25}{2}$,满足m2>8,
∴m2≥$\frac{25}{2}$,
又$\overrightarrow{MA}+\overrightarrow{MB}$=(x1+x2+6,y1+y2)且x1+x2=m(y1+y2)-6,
∴$\overrightarrow{MA}+\overrightarrow{MB}$=(m(y1+y2),(y1+y2)),
∴|$\overrightarrow{MA}+\overrightarrow{MB}$|=$\sqrt{(1+{m}^{2})({y}_{1}+{y}_{2})^{2}}$=$\sqrt{(1+{m}^{2})\frac{36{m}^{2}}{(1+{m}^{2})^{2}}}$=6$\sqrt{\frac{1}{1+\frac{1}{{m}^{2}}}}$,
∵1<1+$\frac{1}{{m}^{2}}$≤$\frac{27}{25}$,
∴$\frac{10\sqrt{3}}{3}$≤|$\overrightarrow{MA}+\overrightarrow{MB}$|<6,
综上所述,|$\overrightarrow{MA}+\overrightarrow{MB}$|的取值范围[$\frac{10\sqrt{3}}{3}$,6).
点评 本题考查圆方程,考查直线与圆的位置关系,考查向量知识的运用,考查韦达定理,考查分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com