精英家教网 > 高中数学 > 题目详情

【题目】我国古代著名的周髀算经中提到:凡八节二十四气,气损益九寸九分六分分之一;冬至晷长一丈三尺五寸,夏至晷长一尺六寸意思是:一年有二十四个节气,每相邻两个节气之间的日影长度差为分;且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分则“立春”时日影长度为  

A. B. C. D.

【答案】B

【解析】

首先“冬至”时日影长度最大,为1350分,“夏至”时日影长度最小,为160分,即可求出,进而求出立春”时日影长度为.

解:一年有二十四个节气,每相邻两个节气之间的日影长度差为分,

且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分.

解得

“立春”时日影长度为:

故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中,角的对边分别为,向量(

,满足.

(1)求角的大小;

(2)设 有最大值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC在内角ABC的对边分别为abc,已知a=bcosC+csinB.

)求B

)若b=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,过点P分别做圆O的切线PA、PB和割线PCD,弦BE交CD于F,满足P、B、F、A四点共圆.
(Ⅰ)证明:AE∥CD;
(Ⅱ)若圆O的半径为5,且PC=CF=FD=3,求四边形PBFA的外接圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点与两个定点的距离之比为.

(1)求点的坐标所满足的关系式;

(2)求面积的最大值;

(3)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某篮球队对篮球运动员的篮球技能进行统计研究,针对篮球运动员在投篮命中时,运动员在篮筐中心的水平距离这项指标,对某运动员进行了若干场次的统计,依据统计结果绘制如下频率分布直方图:
(Ⅰ)依据频率分布直方图估算该运动员投篮命中时,他到篮筐中心的水平距离的中位数;
(Ⅱ)在某场比赛中,考察他前4次投篮命中到篮筐中心的水平距离的情况,并且规定:运动员投篮命中时,他到篮筐中心的水平距离不少于4米的记1分,否则扣掉1分.用随机变量X表示第4次投篮后的总分,将频率视为概率,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,各个侧面均是边长为的正方形,为线段的中点.

(1)求证:直线平面

(2)求直线与平面所成角的余弦值;

(3)为线段上任意一点,在内的平面区域(包括边界)是否存在点,使,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数y=3cos2x的图象,只需把函数y=3sin(2x+ )的图象上所有的点(
A.向右平行移动 个单位长度
B.向右平行移动 个单位长度
C.向左平行移动 个单位长度
D.向左平移移动 个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱ABC﹣A1B1C1中,AA1=AB=AC=2,D,E,F分别是B1A1 , CC1 , BC的中点,AE⊥A1B1 , D为棱A1B1上的点.

(1)证明:DF⊥AE;
(2)求平面DEF与平面ABC所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案