精英家教网 > 高中数学 > 题目详情
6.设实数x,y满足约束条件$\left\{\begin{array}{l}2x-y-1≥0\\ x-2y+1≤0\\ x+y-5≤0\end{array}$,则当z=ax+by(a>0,b>0)取得最小值2时,则$\frac{1}{a}+\frac{1}{b}$的最小值是(  )
A.$\frac{{5+2\sqrt{6}}}{2}$B.$5+2\sqrt{6}$C.$\frac{1}{2}$D.2

分析 首先画出可行域,得到目标函数取最小值时a,b满足的等式,然后对所求变形为基本不等式的形式求最小值.

解答 解:画出可行域如图,由$\left\{\begin{array}{l}{2x-y-1=0}\\{x-2y+1=0}\end{array}\right.$得到H(1,1),
∵当a>0,b>0,所以z在H(1,1)处取得最小值,
故a+b=2,
∴$\frac{1}{a}+\frac{1}{b}=(\frac{1}{a}+\frac{1}{b})•\frac{a+b}{2}=\frac{1}{2}(1+\frac{b}{a}+\frac{a}{b}+1)≥1+\sqrt{\frac{b}{a}•\frac{a}{b}}=2$,
所以$\frac{1}{a}+\frac{1}{b}$的最小值是2;
故选D.

点评 本题考查了简单线性规划问题以及利用基本不等式求最小值;正确求出a+b=2是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.△ABC的三个内角A,B,C所对的边分别为$a,b,c,asinAsinB+b{cos^2}A=\sqrt{3}a$,则$\frac{b}{a}$的值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的首项a1=1,数列{bn}是公比为16的等比数列,且${b_n}={2^{a_n}}$.
(1)求数列{an}的通项公式an及前n项和Sn
(2)设${c_n}=\frac{S_n}{n}•{2^{n-1}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知正四面体ABCD,则直线BC与平面ACD所成角的正弦值为$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知集合A={x|y=$\sqrt{\frac{6}{x+1}-1}$,集合B={x|y=lg(-x2+2x+3)}.求A∩(∁RB).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.某销售代理商主要代理销售新京报、北京晨报、北京青年报三种报刊.代理商统计了过去连续100天的销售情况,数据如下:
20002100220023002400
新京报1015303510
北京晨报182040202
北京青年报352520155
三种报刊中,日平均销售量最大的报刊是新京报;如果每份北京晨报的销售利润分别为新京报的1.5倍,北京青年报的1.2倍,那么三种报刊日平均销售利润最大的报刊是北京晨报.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.中心在坐标原点,对称轴为坐标轴的双曲线C过点$P(3,\sqrt{5})$,离心率为$\sqrt{2}$.
(1)求双曲线C的方程;
(2)过C的左顶点A引C的一条渐近线的平行线l,求直线l与另一条渐近线及x轴围成的三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)是定义在[-1,1]上的减函数,若f(m-1)>f(2m-1),则实数m的取值范围是(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=-x2+|x|的递减区间是[-$\frac{1}{2}$,0]和[$\frac{1}{2}$,+∞).

查看答案和解析>>

同步练习册答案