已知双曲线的离心率
,过
的直线到原点的距离是
(1)求双曲线的方程;
(2)已知直线交双曲线于不同的点C,D且C,D都在以B为圆心的圆上,求k的值.
科目:高中数学 来源: 题型:解答题
已知椭圆的两焦点是F1(0,-1),F2(0,1),离心率e=
(1)求椭圆方程;
(2)若P在椭圆上,且|PF1|-|PF2|=1,求cos∠F1PF2
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知椭圆的焦点在
轴上,离心率为
,对称轴为坐标轴,且经过点
.
(I)求椭圆的方程;
(II)直线与椭圆
相交于
、
两点,
为原点,在
、
上分别存在异于
点的点
、
,使得
在以
为直径的圆外,求直线斜率
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,设、
分别是圆
和椭圆
的弦,且弦的端点在
轴的异侧,端点
与
、
与
的横坐标分别相等,纵坐标分别同号.
(Ⅰ)若弦所在直线斜率为
,且弦
的中点的横坐标为
,求直线
的方程;
(Ⅱ)若弦过定点
,试探究弦
是否也必过某个定点. 若有,请证明;若没有,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(10分)过直角坐标平面中的抛物线
,直线
过焦点
且与抛物线相交于
,
两点.
⑴当直线的倾斜角为时,用
表示
的长度;
⑵当且三角形
的面积为4时,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分16分)
椭圆:
的左、右顶点分别
、
,椭圆过点
且离心率
.
(1)求椭圆的标准方程;
(2)过椭圆上异于
、
两点的任意一点
作
轴,
为垂足,延长
到点
,且
,过点
作直线
轴,连结
并延长交直线
于点
,线段
的中点记为点
.
①求点所在曲线的方程;
②试判断直线与以
为直径的圆
的位置关系, 并证明.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分) 已知椭圆的离心率
,A,B
分别为椭圆的长轴和短轴的端点,为AB的中点,O为坐标原点,且
.
(1)求椭圆的方程;
(2)过(-1,0)的直线交椭圆于P,Q两点,求△POQ面积最大时直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分16分)如图,是椭圆
的左、右顶点,椭圆
的离心率为
,右准线
的方程为
.
(1)求椭圆方程;
(2)设是椭圆
上异于
的一点,直线
交
于点
,以
为直径的圆记为
.
①若恰好是椭圆
的上顶点,求
截直线
所得的弦长;
②设与直线
交于点
,试证明:直线
与
轴的交点
为定点,并求该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题13分)曲线上任意一点M满足
, 其中F
(-
F
(
抛物线
的焦点是直线y=x-1与x轴的交点, 顶点为原点O.
(1)求,
的标准方程;
(2)请问是否存在直线满足条件:①过
的焦点
;②与
交于不同
两点,
,且满足
?若存在,求出直线
的方程;若不
存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com