精英家教网 > 高中数学 > 题目详情

【题目】如图,点P在正方体ABCD﹣A1B1C1D1的表面上运动,且P到直线BC与直线C1D1的距离相等,如果将正方体在平面内展开,那么动点P的轨迹在展开图中的形状是(  )

A.
B.
C.
D.

【答案】B
【解析】解:在平面BCC1B1上,

P到直线C1D1的距离为|PC1|,

∵P到直线BC与直线C1D1的距离相等,∴点P到点C1的距离与到直线BC的距离相等,

∴轨迹为抛物线,且点C1为焦点,BC为准线;故排除C,D,

同理可得,在平面ABB1A1上,点P到点B的距离与到直线C1D1的距离相等,

从而排除A,

所以答案是:B.

【考点精析】通过灵活运用棱柱的结构特征,掌握两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地区拟建立一个艺术搏物馆,采取竞标的方式从多家建筑公司选取一家建筑公司,经过层层筛选,甲、乙两家建筑公司进入最后的招标.现从建筑设计院聘请专家设计了一个招标方案:两家公司从6个招标总是中随机抽取3个总题,已知这6个招标问题中,甲公司可正确回答其中4道题目,而乙公司能正面回答每道题目的概率均为 ,甲、乙两家公司对每题的回答都是相独立,互不影响的.
(1)求甲、乙两家公司共答对2道题目的概率;
(2)请从期望和方差的角度分析,甲、乙两家哪家公司竞标成功的可能性更大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤|f( )|对(0,+∞)恒成立,且 ,则f(x)的单调递增区间是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”: 2 = ,3 = ,4 = ,5 =
则按照以上规律,若8 = 具有“穿墙术”,则n=(
A.7
B.35
C.48
D.63

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设复平面上点Z1 , Z2 , …,Zn , …分别对应复数z1 , z2 , …,zn , …;
(1)设z=r(cosα+isinα),(r>0,α∈R),用数学归纳法证明:zn=rn(cosnα+isinnα),n∈Z+
(2)已知 ,且 (cosα+isinα)(α为实常数),求出数列{zn}的通项公式;
(3)在(2)的条件下,求 |+….

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在矩形ABCD中,AB=4 ,AD=2 ,将△ABD沿BD折起,使得点A折起至A′,设二面角A′﹣BD﹣C的大小为θ.

(1)当θ=90°时,求A′C的长;
(2)当cosθ= 时,求BC与平面A′BD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln(x+1)﹣x2+(2﹣a)x﹣a(a∈R)若存在唯一的正整数x0 , 使得f(x0)>0,则实数a的取值范围是(  )
A.[ ]
B.(
C.( ]
D.(ln3,ln2+1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U=R,集合M={x|x2+x﹣2>0}, ,则(UM)∩N=(  )
A.[﹣2,0]
B.[﹣2,1]
C.[0,1]
D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】各项为正的数列{an}满足
(1)当λ=an+1时,求证:数列{an}是等比数列,并求其公比;
(2)当λ=2时,令 ,记数列{bn}的前n项和为Sn , 数列{bn}的前n项之积为Tn , 求证:对任意正整数n,2n+1Tn+Sn为定值.

查看答案和解析>>

同步练习册答案