精英家教网 > 高中数学 > 题目详情
19.一质点做直线运动,在x(单位:s)时离出发点的距离(单位:m)为f(x)=$\frac{2}{3}$x3+x2+2x.
(1)求质点在第1s内的平均速度;
(2)求质点在第1s末的瞬时速度;
(3)经过多长时间质点的运动速度达到14m/s?

分析 (1)根据定积分求出质点在第1s内的路程,从而求出质点在第1s内的平均速度即可;
(2)求出f′(1)的值,即质点在第1s末的瞬时速度;
(3)令f′(x)=14,求出x的值即可.

解答 解:(1)f(x)=$\frac{2}{3}$x3+x2+2x,f′(x)=2x2+2x+2,
故${∫}_{0}^{1}$($\frac{2}{3}$x3+x2+2x)=($\frac{1}{6}$x4+$\frac{1}{3}$x3+x2)${|}_{0}^{1}$=$\frac{3}{2}$,
故质点在第1s内的平均速度是$\frac{3}{2}$m/s;
(2)根据(1)得:f′(1)=6
质点在第1s末的瞬时速度是6m/s;
(3)由2x2+2x+2=14,解得:x=2,
故经过2s质点的运动速度达到14m/s.

点评 本题考查了瞬时速度,考查导数的应意义,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.如图是一正方体的表面展开图,MN和PB是两条面对角线,则在正方体中,直线MN与直线PB的位置关系为(  )
A.相交B.平行C.异面D.重合

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列叙述错误的是(  )
A.若A∈l,B∈l,且A∈α,B∈α,则l?α
B.若直线 a∩b=A,则直线a与直线b能确定一个平面
C.任意三点A、B、C可以确定一个平面
D.若P∈α∩β且α∩β=l,则P∈l

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.给定0≤x0<1对一切整数n>0,令${x_n}=\left\{\begin{array}{l}2{x_{n-1}},2{x_{n-1}}<1\\ 2{x_{n-1}}-1,2{x_{n-1}}≥1\end{array}\right.$,则使x0=x6成立的x0的个数为64.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知映射f:R→R,x→2x+1,求得f(x)=7时的原象x是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系xoy中,O为坐标原点,已知点Q(1,2),P是动点,且三角形POQ的三边所在直线的斜率满足$\frac{1}{{{k_{OP}}}}+\frac{1}{{{k_{OQ}}}}=\frac{1}{{{k_{PQ}}}}$.
(1)求点P的轨迹C的方程;
(2)过F作倾斜角为60°的直线L,交曲线C于A,B两点,求△AOB的面积;
(3)过点D(1,0)任作两条互相垂直的直线l1,l2,分别交轨迹C于点A,B和M,N,设线段AB,MN的中点分别为E,F.求证:直线EF恒过一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若函数y=loga(x+1)(a>0,a≠1)的图象过定点,则x值为(  )
A.-1B.0C.1D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数y=f(x)是R上的偶函数,且当x≤0时,f(x)=log${\;}_{\frac{1}{2}}$(1-x)+x.
(1)求f(1)的值;
(2)求函数y=f(x)的表达式,并直接写出其单调区间(不需要证明);
(3)若f(lga)+2<0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点.
(Ⅰ)求证:直线BD1∥平面PAC;
(Ⅱ)求证:平面PAC⊥平面BDD1
(Ⅲ)求直线PB1与平面PAC所成的角.

查看答案和解析>>

同步练习册答案