精英家教网 > 高中数学 > 题目详情

【题目】已知中心在原点,焦点在轴上,离心率为的椭圆过点.

(1)求椭圆方程;

(2)设不过原点O的直线,与该椭圆交于PQ两点,直线OPOQ的斜率依次为,满足,求的值.

【答案】(1);(2)

【解析】

(1)根据题意列出方程组:解出即可;(2)联立直线和椭圆得到方程:(4k2+1)x2+8kmx+4m2-4=0,4k=k1+k2,由韦达定理得到表达式,进而得到结果.

(1)设椭圆的方程为=1(a>b>0),则由题意得解得a=2,b=1,

∴椭圆的方程为+y2=1.

(2)(4k2+1)x2+8kmx+4m2-4=0,

Δ=64k2m2-4(4k2+1)(4m2-4)>0,得m2<4k2+1(*),

∴x1+x2=-,x1x2

设P(x1,y1),Q(x2,y2),∴k1,k2

则4k=k1+k2=2k-

∴m2,满足(*)式,故m2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,ABC中,,ABED是边长为1的正方形,平面ABED⊥底面ABC,若G,F分别是EC,BD的中点.

(1)求证:GF∥底面ABC;

(2)求证:AC⊥平面EBC;

(3)求几何体ADEBC的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知(1+x)+(1+x)2+(1+x)3+…+(1+x)n的展开式中x的系数恰好是数列{an}的前n项和Sn
(1)求数列{an}的通项公式;
(2)数列{bn}满足 ,记数列{bn}的前n项和为Tn , 求证:Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴,长度单位相同,建立极坐标系,已知圆A的参数方程为 (其中θ为参数),圆B的极坐标方程为ρ=2sinθ.
(Ⅰ)分别写出圆A与圆B的直角坐标方程;
(Ⅱ)判断两圆的位置关系,若两圆相交,求其公共弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:(a>b>0)的左焦点为F,C与过原点的直线相交于A,B两点,连接AF,BF.若,cos ∠ABF=,则C的离心率为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂第一季度某产品月生产量分别为10万件,12万件,13万件,为了预测以后每个月的产量,以这3个月的产量为依据,用一个函数模拟该产品的月产量y (单位:万件)与月份x 的关系.模拟函数1:y=ax+ +c
;模拟函数2:y=mnx+s.
(1)已知4月份的产量为13.7 万件,问选用哪个函数作为模拟函数好?
(2)受工厂设备的影响,全年的每月产量都不超过15万件,请选用合适的模拟函数预测6月份的产量.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=3sinx﹣πx,命题p:x∈(0, ),f(x)<0,则(
A.p是假命题,¬p:?x∈(0, ),f(x)≥0
B.p是假命题,¬p:?x0∈(0, ),f(x0)≥0
C.p是真命题,¬p:?x∈(0, ),f(x)>0
D.p是真命题,¬p:?x0∈(0, ),f(x0)≥0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司经营一批进价为每件400元的商品,在市场调查时发现,此商品的销售单价x(元)与日销售量y(件)之间的关系如下表所示:

x/元

500

600

700

800

900

y/件

10

8

9

6

1

(1)求y关于x的回归直线方程.

(2)借助回归直线方程,预测销售单价为多少元时,日利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,D是到原点的距离不大于1的点构成的区域,E是满足不等式组 的点(x,y)构成的区域,向D中随机投一点,则所投的点落在E中的概率是

查看答案和解析>>

同步练习册答案