精英家教网 > 高中数学 > 题目详情

为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人调查,就是否“取消英语听力”的问题,调查统计的结果如下表:

态度

 

应该取消
应该保留
无所谓
在校学生
2100人
120人
y
社会人士
600人
x
z
已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.05.
(1)现用分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?
(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人平均分成两组进行深入交流,求第一组中在校学生人数ξ的分布列和数学期望.

(1)应在“无所谓”态度抽取72人.
(2)ξ的分布列为:

ξ
1
2
3
P



=2.

解析试题分析:(1)频率即为概率,所以=0.05,解得x=60.这样可得持“无所谓”态度的人数,共有3600-2100-120-600-60=720人.分层抽样实质上就是按比例抽样,所以应在“无所谓”态度抽取720×=72人.(2)由(1)知持“应该保留”态度的人一共有180人,按比例计算可得在所抽取的6人中,在校学生为=4人,社会人士为=2人.将这6人平均分成两组,则第一组在校学生人数ξ=1,2,3.这是一个超几何分布,根据超几何分布的概率公式即可得其分布列,进而求得其期望.
试题解析:(1)∵抽到持“应该保留”态度的人的概率为0.05,
=0.05,解得x=60.       2分
∴持“无所谓”态度的人数共有3600-2100-120-600-60=720.     4分
∴应在“无所谓”态度抽取720×=72人.      6分
(2)由(1)知持“应该保留”态度的一共有180人,
∴ 在所抽取的6人中,在校学生为=4人,社会人士为=2人,
于是第一组在校学生人数ξ=1,2,3,        8分
P(ξ=1)=P(ξ=2)=P(ξ=3)=
ξ的分布列为:

ξ
1
2
3
P



10分
=1×+2×+3×=2.       12分
考点:1、简单随机抽样;2、古典概型;3、随机变量的分布列及期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

甲、乙两名运动员参加“选拔测试赛”,在相同条件下,两人5次测试的成绩(单位:分)记录如下:
甲  86   77   92   72   78
乙  78   82   88   82   95
(1)用茎叶图表示这两组数据;.
(2)现要从中选派一名运动员参加比赛,你认为选派谁参赛更好?说明理由(不用计算);
(3)若从甲、乙两人的5次成绩中各随机抽取一个,求甲的成绩比乙高的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在某大学联盟的自主招生考试中,报考文史专业的考生参加了人文基础学科考试科目“语文”和“数学”的考试.某考场考生的两科考试成绩数据统计如下图所示,本次考试中成绩在内的记为,其中“语文”科目成绩在内的考生有10人.

(1)求该考场考生数学科目成绩为的人数;
(2)已知参加本考场测试的考生中,恰有2人的两科成绩均为.在至少一科成绩为的考生中,随机抽取2人进行访谈,求这2人的两科成绩均为的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

 
喜爱打篮球
不喜爱打篮球
合计
男生
 
5
 
女生
10
 
 
合计
 
 
50
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;
(3)已知喜爱打篮球的10位女生中,还喜欢打羽毛球,还喜欢打乒乓球,还喜欢踢足球,现在从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的8位女生中各选出1名进行其他方面的调查,求不全被选中的概率.
下面的临界值表供参考:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某学校随机抽取部分新生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学路上所需时间的范围是,样本数据分组为.

(1)求直方图中的值;
(2)如果上学路上所需时间不少于40分钟的学生可申请在学校住宿,请估计学校1000名新生中有多少名学生可以申请住宿;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某旅行社为调查市民喜欢“人文景观”景点是否与年龄有关,随机抽取了55名市民,得到数据如下表:

 
喜欢
不喜欢
合计
大于40岁
20
5
25
20岁至40岁
10
20
30
合计
30
25
55
(1)判断是否有99.5%的把握认为喜欢“人文景观”景点与年龄有关?
(2)用分层抽样的方法从喜欢“人文景观”景点的市民中随机抽取6人作进一步调查,将这6位市民作为一个样本,从中任选2人,求恰有1位“大于40岁”的市民和1位“20岁至40岁”的市民的概率.
下面的临界值表供参考:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
(参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某单位有2000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:

人数
 
管理
 
技术开发
 
营销
 
生产
 
共计
 
老年
 
40
 
40
 
40
 
80
 
200
 
中年
 
80
 
120
 
160
 
240
 
600
 
青年
 
40
 
160
 
280
 
720
 
1 200
 
小计
 
160
 
320
 
480
 
1 040
 
2 000
 
(1)若要抽取40人调查身体状况,则应怎样抽样?
(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某中学举行了为期3天的新世纪体育运动会,同时进行全校精神文明擂台赛.为了解这次活动在全校师生中产生的影响,分别在全校500名教职员工、3000名初中生、4000名高中生中作问卷调查,如果要在所有答卷中抽出120份用于评估.
(1)应如何抽取才能得到比较客观的评价结论?
(2)要从3000份初中生的答卷中抽取一个容量为48的样本,如果采用简单随机抽样,应如何操作?
(3)为了从4000份高中生的答卷中抽取一个容量为64的样本,如何使用系统抽样抽取到所需的样本?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

学校为测评班级学生对任课教师的满意度,采用“100分制”打分的方式来计分.现从某班学生中随机抽取10名,以下茎叶图记录了他们对某教师的满意度分数(以十位数字为茎,个位数字为叶):

(1)指出这组数据的众数和中位数;
(2)若满意度不低于98分,则评价该教师为“优秀”.求从这10人中随机选取3人,至多有1人评价
该教师是“优秀”的概率;
(3)以这10人的样本数据来估计整个班级的总体数据,若从该班任选3人,记表示抽到评价该教师为
“优秀”的人数,求的分布列及数学期望.

查看答案和解析>>

同步练习册答案