精英家教网 > 高中数学 > 题目详情
已知点(x,y)在椭圆C:的第一象限上运动。
(1)求点的轨迹C′的方程;
(2)若把轨迹C′的方程表达式记为,且内有最大值,试求椭圆C的离心率的取值范围。
解:(1)设轨迹C′上任一点坐标为P(x0,y0) ,

(1)×(2)得
(2)÷(1)得
代入
(2)
∵x∈
,当且仅当时取等号,
若满足已知,则有

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网
如图,四边形OABC为矩形,点A、C的坐标分别为(a+1,0)(a>1)、(0,1),点D在OA上,坐标为(a,0),椭圆C分别以OD、OC为长、短半轴,CD是椭圆在矩形内部的椭圆弧.已知直线l:y=-x+m与椭圆弧相切,且与AD相交于点E.
(Ⅰ)当m=2时,求椭圆C的标准方程;
(Ⅱ)圆M在矩形内部,且与l和线段EA都相切,若直线l将矩形OABC分成面积相等的两部分,求圆M面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•怀化二模)如图展示了一个由区间(0,k)(其中k为一正实数)到实数集R上的映射过程:区间(0,k)中的实数m对应线段AB上的点M,如图1;将线段AB围成一个离心率为
3
2
的椭圆,使两端点A、B恰好重合于椭圆的一个短轴端点,如图2;再将这个椭圆放在平面直角坐标系中,使其中心在坐标原点,长轴在x轴上,已知此时点A的坐标为(0,1),如图3,在图形变化过程中,图1中线段AM的长度对应于图3中的椭圆弧ADM的长度.图3中直线AM与直线y=-2交于点N(n,-2),则与实数m对应的实数就是n,记作f(m)=n,

现给出下列5个命题①f(
k
2
)=6
;②函数f(m)是奇函数;③函数f(m)在(0,k)上单调递增;④函数f(m)的图象关于点(
k
2
,0)
对称;⑤函数f(m)=3
3
时AM过椭圆的右焦点.其中所有的真命题是(  )

查看答案和解析>>

科目:高中数学 来源:2013年湖南省怀化市高考数学三模试卷(文科)(解析版) 题型:解答题

已知椭圆过点,离心率,若点M(x,y)在椭圆C上,则点称为点M的一个“椭点”,直线l交椭圆C于A、B两点,若点A、B的“椭点”分别是P、Q,且以PQ为直径的圆经过坐标原点O.
(1)求椭圆C的方程;
(2)若椭圆C的右顶点为D,上顶点为E,试探究△OAB的面积与△ODE的面积的大小关系,并证明.

查看答案和解析>>

科目:高中数学 来源:2013年黑龙江省哈尔滨三中高考数学二模试卷(文科)(解析版) 题型:解答题

已知椭圆过点,离心率,若点M(x,y)在椭圆C上,则点称为点M的一个“椭点”,直线l交椭圆C于A、B两点,若点A、B的“椭点”分别是P、Q,且以PQ为直径的圆经过坐标原点O.
(1)求椭圆C的方程;
(2)若椭圆C的右顶点为D,上顶点为E,试探究△OAB的面积与△ODE的面积的大小关系,并证明.

查看答案和解析>>

科目:高中数学 来源:2013年黑龙江省哈尔滨三中高考数学二模试卷(理科)(解析版) 题型:解答题

已知椭圆过点,离心率,若点M(x,y)在椭圆C上,则点称为点M的一个“椭点”,直线l交椭圆C于A、B两点,若点A、B的“椭点”分别是P、Q,且以PQ为直径的圆经过坐标原点O.
(1)求椭圆C的方程;
(2)若椭圆C的右顶点为D,上顶点为E,试探究△OAB的面积与△ODE的面积的大小关系,并证明.

查看答案和解析>>

同步练习册答案