精英家教网 > 高中数学 > 题目详情

已知实数a满足方程(x-a+1)2+(y-1)2=1,当0≤y≤b(b∈R)时,由此方程可以确定一个偶函数y=f(x),则抛物线y2=-4x的焦点到动点(a,b)所构成的轨迹上点的距离的最大值为

[  ]
A.

B.

C.

D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数a满足方程:(x-a+1)2+(y-1)2=1,当0≤y≤b(b∈R)时,由此方程可以确定一个偶函数y=f(x),则抛物线y2=-4x的焦点到动点(a,b)所构成轨迹上点的距离的最大值为(  )
A、
3
B、
5
C、
13
2
D、
15
2

查看答案和解析>>

科目:高中数学 来源:桂林二模 题型:单选题

已知实数a满足方程:(x-a+1)2+(y-1)2=1,当0≤y≤b(b∈R)时,由此方程可以确定一个偶函数y=f(x),则抛物线y2=-4x的焦点到动点(a,b)所构成轨迹上点的距离的最大值为(  )
A.
3
B.
5
C.
13
2
D.
15
2

查看答案和解析>>

科目:高中数学 来源:2010年广西桂林市高考数学二模试卷(理科)(解析版) 题型:选择题

已知实数a满足方程:(x-a+1)2+(y-1)2=1,当0≤y≤b(b∈R)时,由此方程可以确定一个偶函数y=f(x),则抛物线y2=-4x的焦点到动点(a,b)所构成轨迹上点的距离的最大值为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年安徽省皖南八校高三第三次联考数学试卷(理科)(解析版) 题型:选择题

已知实数a满足方程:(x-a+1)2+(y-1)2=1,当0≤y≤b(b∈R)时,由此方程可以确定一个偶函数y=f(x),则抛物线y2=-4x的焦点到动点(a,b)所构成轨迹上点的距离的最大值为( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案