精英家教网 > 高中数学 > 题目详情

【题目】如图所示,ABCD﹣A1B1C1D1是棱长为a的正方体,M、N分别是下底面的棱A1B1 , B1C1的中点,P是上底面的棱AD上的一点,AP= ,过P、M、N的平面交上底面于PQ,Q在CD上,则PQ=

【答案】 a
【解析】∵平面ABCD∥平面A1B1C1D1 , MN平面ABCD
∴MN∥平面A1B1C1D1 , 又PQ=面PMN∩平面A1B1C1D1
∴MN∥PQ.
∵M、N分别是A1B1、B1C1的中点
∴MN∥A1C1∥AC,
∴PQ∥AC,又AP= ,ABCD﹣A1B1C1D1是棱长为a的正方体,
∴CQ= ,从而DP=DQ=
∴PQ= = = a.
所以答案是: a
【考点精析】本题主要考查了平面与平面平行的性质的相关知识点,需要掌握如果两个平面同时与第三个平面相交,那么它们的交线平;可以由平面与平面平行得出直线与直线平行才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】把下列各命题作为原命题,分别写出它们的逆命题、否命题和逆否命题.

(1)αβ,则sin αsin β

(2)若对角线相等,则梯形为等腰梯形;

(3)已知abcd都是实数,若abcd,则acbd.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

单价x(元)

8

8.2

8.4

8.6

8.8

9

销量y(件)

90

84

83

80

75

68

单价x(元)

8

8.2

8.4

8.6

8.8

9

销量y(件)

90

84

83

80

75

68

(1)求回归直线方程其中

(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某城市有一条公路正西方AO通过市中心O后转向北偏东α角方向的OB,位于该市的某大学M与市中心O的距离OM=3 km,且∠AOM=β,现要修筑一条铁路L,L在OA上设一站A,在OB上设一站B,铁路在AB部分为直线段,且经过大学M,其中tanα=2,cosβ= ,AO=15km.

(1)求大学M在站A的距离AM;
(2)求铁路AB段的长AB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12分ABC中,角A,B,C所对的边分别为a,b,c已知a=3,cos A,B=A+

1b的值;

2ABC的面积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Snn∈N*.已知a1=1,a2a3,且当n≥2时,4Sn+2+5Sn=8Sn+1Sn-1.

(1)求a4的值;

(2)证明: 为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 底面为菱形,平面,点在棱上.

(Ⅰ)求证:直线平面

(Ⅱ)若平面,求证:

(Ⅲ)是否存在点,使得四面体的体积等于四面体的体积的?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示甲船以每小时30海里的速度向正北方向航行乙船按固定方向匀速直线航行当甲船位于A1处时乙船位于甲船的南偏西75°方向的B1此时两船相距20海里当甲船航行20分钟到达A2处时乙船航行到甲船的南偏西60°方向的B2此时两船相距10海里问:乙船每小时航行多少海里?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣6x+8,x∈[1,a],并且函数f(x)的最小值为f(a),则实数a的取值范围是

查看答案和解析>>

同步练习册答案