精英家教网 > 高中数学 > 题目详情
(2012•福建)选修4-5:不等式选讲
已知函数f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集为[-1,1].
(Ⅰ)求m的值;
(Ⅱ)若a,b,c∈R,且
1
a
+
1
2b
+
1
3c
 =m
,求证:a+2b+3c≥9.
分析:(Ⅰ)由条件可得 f(x+2)=m-|x|,故有m-|x|≥0的解集为[-1,1],即|x|≤m 的解集为[-1,1],故m=1.
(Ⅱ)根据a+2b+3c=(a+2b+3c)(
1
a
+
1
2b
+
1
3c
)=1+
2b
a
+
3c
a
+
a
2b
+1+
3c
2b
+
a
3c
+
2b
3c
+1,利用基本不等式证明它大于或等于9.
解答:解:(Ⅰ)函数f(x)=m-|x-2|,m∈R,故 f(x+2)=m-|x|,由题意可得m-|x|≥0的解集为[-1,1],
即|x|≤m 的解集为[-1,1],故m=1.
(Ⅱ)由a,b,c∈R,且
1
a
+
1
2b
+
1
3c
 =m
=1,
∴a+2b+3c=(a+2b+3c)(
1
a
+
1
2b
+
1
3c

=1+
2b
a
+
3c
a
+
a
2b
+1+
3c
2b
+
a
3c
+
2b
3c
+1
=3+
2b
a
+
3c
a
+
a
2b
+
3c
2b
+
a
3c
+
2b
3c
≥3+6=9,当且仅当
2b
a
=
3c
a
=
a
2b
=
3c
2b
=
a
3c
=
2b
3c
=1时,等号成立.
所以a+2b+3c≥9
点评:本题主要考查带有绝对值的函数的值域,基本不等式在最值问题中的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•福建模拟)(1)选修4-2:矩阵与变换
已知向量
1
-1
在矩阵M=
1m
01
变换下得到的向量是
0
-1

(Ⅰ)求m的值;
(Ⅱ)求曲线y2-x+y=0在矩阵M-1对应的线性变换作用下得到的曲线方程.
(2)选修4-4:极坐标与参数方程
在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知点M的极坐标为(4
2
π
4
)
,曲线C的参数方程为
x=1+
2
cosα
y=
2
sinα
(α为参数).
(Ⅰ)求直线OM的直角坐标方程;
(Ⅱ)求点M到曲线C上的点的距离的最小值.
(3)选修4-5:不等式选讲
设实数a,b满足2a+b=9.
(Ⅰ)若|9-b|+|a|<3,求a的取值范围;
(Ⅱ)若a,b>0,且z=a2b,求z的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•福建模拟)21、某工厂共有工人40人,在一次产品大检查中每人的产品合格率(百分比)绘制成频率分布直方图,如图所示.
(Ⅰ)求合格率在[50,60)内的工人人数;
(Ⅱ)为了了解工人在本次大检查中产品不合格的情况,从合格率在[50,70)内的工人中随机选取3人的合格率进行分析,用X表示所选工人合格率在[60,70)内的人数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•福建模拟)(1)选修4-2:矩阵与变换
已知向量
1
-1
在矩阵M=
1m
01
变换下得到的向量是
0
-1

(Ⅰ)求m的值;
(Ⅱ)求曲线y2-x+y=0在矩阵M-1对应的线性变换作用下得到的曲线方程.
(2)选修4-4:极坐标与参数方程
在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知点M的极坐标为(4
2
π
4
),曲线C的参数方程为
x=1+
2
cosα
y=
2
sinα
(α为参数).
(Ⅰ)求直线OM的直角坐标方程;
(Ⅱ)求点M到曲线C上的点的距离的最小值.
(3)选修4-5:不等式选讲
设实数a、b满足2a+b=9.
(Ⅰ)若|9-b|+|a|<3,求x的取值范围;
(Ⅱ)若a,b>0,且z=a2b,求z的最大值.

查看答案和解析>>

同步练习册答案