精英家教网 > 高中数学 > 题目详情

【题目】如图,点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,则PA与BD所成角的度数为(
A.30°
B.45°
C.60°
D.90°

【答案】C
【解析】解:如图,以D为坐标原点,DA所在直线为x轴,DC所在线为y轴,DP所在线为z轴,建立空间坐标系, ∵点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,令PD=AD=1
∴A(1,0,0),P(0,0,1),B(1,1,0),D(0,0,0)
=(1,0,﹣1), =(﹣1,﹣1,0)
∴cosθ= =
故两向量夹角的余弦值为 ,即两直线PA与BD所成角的度数为60°.
故选C
本题求解宜用向量法来做,以D为坐标原点,建立空间坐标系,求出两直线的方向向量,利用数量积公式求夹角即可

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙两名同学在五次考试中数学成绩统计用茎叶图如表示如图2所示,则甲的平均成绩比乙的平均成绩(填高、低、相等);甲成绩的方差比乙成绩的方差(填大、小)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c分别为△ABC三个内角A,B,C所对的边长,且acosB﹣bcosA= c.
(1)求 的值;
(2)若A=60°,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:若函数f(x)对于其定义域内的某一数x0 , 有 f(x0)=x0 , 则称x0是f (x)的一个不动点.已知函数f(x)=ax2+(b+1)x+b﹣1 (a≠0).
(1)当a=1,b=﹣2时,求函数f(x)的不动点;
(2)若对任意的实数b,函数f(x)恒有两个不动点,求a的取值范围;
(3)在(2)的条件下,若y=f(x)图象上两个点A,B的横坐标是函数f(x)的不动点,且A,B两点关于直线y=kx+ 对称,求b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(ω>0,0<φ< )的部分图象如图.
(1)求f(x)的解析式;
(2)将函数y=f(x)的图象上所有点的纵坐标不变,横坐标缩短为原来的 倍,再将所得函数图象向右平移 个单位,得到函数y=g(x)的图象,求g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数:f(x)=asin2x+cos2x且f( )=
(1)求a的值和f(x)的最大值;
(2)求f(x)的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列数列中,既是递增数列又是无穷数列的是(
A.1, ,…
B.﹣1,﹣2,﹣3,﹣4,…
C.﹣1,﹣ ,﹣ ,﹣ ,…
D.1, ,…,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形BCDE的边长为a,已知AB= BC,将△ABE沿边BE折起,折起后A点在平面BCDE上的射影为D点,则翻折后的几何体中有如下描述:
① AB与DE所成角的正切值是
②AB∥CE
③VBACE体积是 a3
④平面ABC⊥平面ADC.
其中正确的有 . (填写你认为正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个内角A,B,C所对的边分别为a,b,c,且asinAsinB+bcos2A= a.
(1)求
(2)若c2=a2+ b2 , 求角C.

查看答案和解析>>

同步练习册答案