精英家教网 > 高中数学 > 题目详情

用定义证明函数f(x)=x2+2x-1在(0,1]上是减函数.

证明见试题解析.

解析试题分析:证明一个函数为减函数,根据定义设为所给区间上的任意两个实数,且,然后作差,但一定要注意的是,对差,我们一般是进行因式分解,把它变成几个因式之积,实际上是要得到几个容易判断正负的因式之积,从而很快可以得出差是正是负.
试题解析:证明:设,则

∴函数上是减函数.
考点:减函数的定义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的定义域;
(2)若函数上单调递增,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知奇函数

(1)求实数的值,并在给出的直角坐标系中画出的图象;
(2)若函数在区间上单调递增,试确定实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数恒过定点 (3,2).
(1)求实数
(2)在(1)的条件下,将函数的图象向下平移1个单位,再向左平移个单位后得到函数,设函数的反函数为,求的解析式;
(3)对于定义在[1,9]的函数,若在其定义域内,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

新晨投资公司拟投资开发某项新产品,市场评估能获得万元的投资收益.现公司准备制定一个对科研课题组的奖励方案:奖金(单位:万元)随投资收益(单位:万元)的增加而增加,且奖金不低于万元,同时不超过投资收益的.
(1)设奖励方案的函数模型为,试用数学语言表述公司对奖励方案的函数模型的基本要求.
(2)下面是公司预设的两个奖励方案的函数模型:
;    ②
试分别分析这两个函数模型是否符合公司要求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:.已知甲、乙两地相距100千米.
(I)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的值;
(2)判断上的单调性,并给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(其中)的图象如图所示.

(1) 求函数的解析式;
(2) 设函数,且,求的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数).
(1)若的定义域和值域均是,求实数的值;
(2)若对任意的,总有,求实数的取值范围.

查看答案和解析>>

同步练习册答案