精英家教网 > 高中数学 > 题目详情

【题目】已知在中,,点在抛物线.

1)求的边所在的直线方程;

2)求的面积最小值,并求出此时点的坐标;

3)若为线段上的任意一点,求的取值范围.

【答案】(1)(2)的面积最小值为3,此时点坐标为.(3)

【解析】

(1)直接由两点式可得直线方程;

(2) 设点坐标为,利用点到直线的距离求出点的距离,再根据二次函数知识求出这个距离的最大值,以及取得最大值的条件,再根据面积公式可求得面积的最大值,根据取得最大值的条件可求得点的坐标;

(3)根据 的几何意义,转化为 ,的斜率,结合图象可得答案.

解:(1)∵

∴直线的方程为,即.

2)设点坐标为

如图所示:

则点到直线距离

又∵

的面积最小值为3.当且仅当时等号成立,此时点坐标为.

3)∵为线段上任意一点,

的几何意义为坐标原点与线段上的点所确定直线的斜率,

的几何意义为当直线与线段有交点时,直线的斜率,

如图所示:

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为内角A,B,C的对边,且asin B=-bsin.

(1)求A;

(2)若△ABC的面积S=c2,求sin C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的参数方程为 (为参数),以直角坐标系原点为极点,x轴非负半轴为极轴并取相同的单位长度建立极坐标系,

(1)求曲线C的极坐标方程,并说明其表示什么轨迹;

(2)若直线l的极坐标方程为,求曲线C上的点到直线l的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的方程是,双曲线的左右焦点分别为的左右顶点,而的左右顶点分别是的左右焦点.

(1)求双曲线的方程;

(2)若直线与双曲线恒有两个不同的交点,且的两个交点AB满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,是正方形所在平面外一点,在面上的投影为,有以下四个命题:

1

2中点,且

3)以作为邻边的平行四边形面积是32

4的内切球半径为.

其中正确命题的个数为(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在六面体中,平面平面平面..

1)求证:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某县共有户籍人口60万,经统计,该县60岁及以上、百岁以下的人口占比,百岁及以上老人15人.现从该县60岁及以上、百岁以下的老人中随机抽取230人,得到如下频数分布表:

年龄段(岁)

人数(人)

125

75

25

5

(1)从样本中70岁及以上老人中,采用分层抽样的方法抽取21人,进一步了解他们的生活状况,则80岁及以上老人应抽多少人?

(2)从(1)中所抽取的80岁及以上老人中,再随机抽取2人,求抽到90岁及以上老人的概率;

(3)该县按省委办公厅、省人民政府办公厅《关于加强新时期老年人优待服务工作的意见》精神,制定如下老年人生活补贴措施,由省、市、县三级财政分级拨款:

①本县户籍60岁及以上居民,按城乡居民养老保险实施办法每月领取55元基本养老金;

②本县户籍80岁及以上老年人额外享受高龄老人生活补贴;

(a)百岁及以上老年人,每人每月发放345元的生活补贴;

(b)90岁及以上、百岁以下老年人,每人每月发放200元的生活补贴;

(c)80岁及以上、90岁以下老年人,每人每月发放100元的生活补贴.

试估计政府执行此项补贴措施的年度预算.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱ABC﹣A1B1C1中,所有棱长均为1,则点B1到平面ABC1的距离为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有关命题的说法错误的是(

A.pq为假命题,则pq均为假命题

B.x1”x23x+20”的充分不必要条件

C.命题x23x+20,则x1”的逆否命题为:x≠1,则x23x+2≠0”

D.对于命题px≥02x3,则¬Px02x≠3

查看答案和解析>>

同步练习册答案