(08年丰台区统一练习一理)(13分)
已知如图(1),正三角形ABC的边长为2a,CD是AB边上的高,
E、F分别是AC和BC边上的点,且满足,现将△ABC
沿CD翻折成直二面角A-DC-B,如图(2).
(Ⅰ) 试判断翻折后直线AB与平面DEF的位置关系,并说明理由;
(Ⅱ) 求二面角B-AC-D的大小;
(Ⅲ) 若异面直线AB与DE所成角的余弦值为,求k的值.
解析:(Ⅰ) AB∥平面DEF. 在△ABC中,
∵ E、F分别是AC、BC上的点,且满足,
∴ AB∥EF.
∵ AB平面DEF,EF平面DEF,∴ AB∥平面DEF. …………… 3分
(Ⅱ)过D点作DG⊥AC于G,连结BG,
∵ AD⊥CD, BD⊥CD,
∴ ∠ADB是二面角A-CD-B的平面角.
∴ ∠ADB=, 即BD⊥AD.
∴ BD⊥平面ADC. ∴ BD⊥AC.
∴ AC⊥平面BGD. ∴ BG⊥AC .
∴ ∠BGD是二面角B-AC-D的平面角. ……………………………… 5分
在ADC中,AD=a, DC=, AC=2a,
∴ .
在Rt△BDG中,.
∴ .
即二面角B-AC-D的大小为.………………………………… 8分
(Ⅲ)∵ AB∥EF, ∴ ∠DEF(或其补角)是异面直线AB与DE所成的角.… 9分
∵ ,∴ .
又DC=, ,
∴
………………… 11分
∴ .
∴ . 解得 .…………………… 13分
科目:高中数学 来源: 题型:
(09年江苏百校样本分析)(10分)挑选空军飞行学员可以说是“万里挑一”,要想通过需过“五关”――目测、初检、复检、文考、政审等. 某校甲、乙、丙三个同学都顺利通过了前两关,有望成为光荣的空军飞行学员. 根据分析,甲、乙、丙三个同学能通过复检关的概率分别是0.5,0.6,0.75,能通过文考关的概率分别是0.6,0.5,0.4,通过政审关的概率均为1.后三关相互独立.
(1)求甲、乙、丙三个同学中恰有一人通过复检的概率;
(2)设通过最后三关后,能被录取的人数为,求随机变量的期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年周至二中三模理) 已知等差数列{an}的公差为2,若a1,a3,a4成等比数列,则a2等于 ( )
(A)-4 (B)-6 (C)-8 (D)-10
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年滨州市质检三文)(12分)已知函数.
(I)当m>0时,求函数的单调递增区间;
(II)是否存在小于零的实数m,使得对任意的,都有,若存在,求m的范围;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com