精英家教网 > 高中数学 > 题目详情
(2012•湖北)设函数f(x)=sin2ωx+2
3
sinωx•cosωx-cos2ωx+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(
1
2
,1).
(1)求函数f(x)的最小正周期;
(2)若y=f(x)的图象经过点(
π
4
,0)
,求函数f(x)的值域.
分析:(1)先利用二倍角公式和两角差的余弦公式将函数f(x)化为y=Asin(ωx+φ)+k型函数,再利用函数的对称性和ω的范围,计算ω的值,最后利用周期计算公式得函数的最小正周期;
(2)先将已知点的坐标代入函数解析式,求得λ的值,再利用正弦函数的图象和性质即可求得函数f(x)的值域.
解答:解:f(x)=sin2ωx+2
3
sinωx•cosωx-cos2ωx+λ
=
3
sin2ωx-cos2ωx+λ
=2sin(2ωx-
π
6
)+λ
∵图象关于直线x=π对称,∴2πω-
π
6
=
π
2
+kπ,k∈z
∴ω=
k
2
+
1
3
,又ω∈(
1
2
,1)
令k=1时,ω=
5
6
符合要求
∴函数f(x)的最小正周期为
5
6
=
5

(2)∵f(
π
4
)=0
∴2sin(2×
5
6
×
π
4
-
π
6
)+λ=0
∴λ=-
2

∴f(x)=2sin(
5
3
x-
π
6
)-
2

故函数f(x)的取值范围为[-2-
2
,2-
2
]
点评:本题主要考查了y=Asin(ωx+φ)+k型函数的图象和性质,复合函数值域的求法,正弦函数的图象和性质,属基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•湖北)设△ABC的内角A,B,C,所对的边分别是a,b,c.若(a+b-c)(a+b+c)=ab,则角C=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖北)设△ABC的内角A,B,C所对的边分别为a,b,c,若三边的长为连续的三个正整数,且A>B>C,3b=20acosA,则sinA:sinB:sinC为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖北)设a,b,c,∈R+,则“abc=1”是“
1
a
+
1
b
+
1
c
≤a+b+c
”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖北)设a,b,c,x,y,z是正数,且a2+b2+c2=10,x2+y2+z2=40,ax+by+cz=20,则
a+b+c
x+y+z
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖北)设函数f(x)=axn(1-x)+b(x>0),n为正整数,a,b为常数,曲线y=f(x)在(1,f(1))处的切线方程为x+y=1.
(I)求a,b的值;
(II)求函数f(x)的最大值
(III)证明:f(x)<
1ne

查看答案和解析>>

同步练习册答案