精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=(1﹣x)ex﹣1.
(Ⅰ)求函数f(x)的最大值;
(Ⅱ)设 ,x>﹣1且x≠0,证明:g(x)<1.

【答案】解:(Ⅰ)f′(x)=﹣xex

当x∈(﹣∞,0)时,f′(x)>0,f(x)单调递增;

当x∈(0,+∞)时,f′(x)<0,f(x)单调递减.

∴f(x)的最大值为f(0)=0.

(Ⅱ)由(Ⅰ)知,当x>0时,f(x)<0,g(x)<0<1.

当﹣1<x<0时,g(x)<1等价于设f(x)>x.

设h(x)=f(x)﹣x,

则h′(x)=﹣xex﹣1.

当x∈(﹣1,0)时,0<﹣x<1, <ex<1,

则0<﹣xex<1,

从而当x∈(﹣1,0)时,h′(x)<0,h(x)在(﹣1,0]单调递减.

当﹣1<x<0时,h(x)>h(0)=0,

即g(x)<1.

综上,总有g(x)<1


【解析】(Ⅰ)求函数的导数,利用函数的导数和最值之间的关系,即可求函数f(x)的最大值;(Ⅱ)利用函数的 单调性,证明不等式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下面给出了四个类比推理: ①由“若a,b,c∈R则(ab)c=a(bc)”类比推出“若a,b,c为三个向量则( = )”;
②“a,b为实数,若a2+b2=0则a=b=0”类比推出“z1 , z2为复数,若 ”;
③“在平面内,三角形的两边之和大于第三边”类比推出“在空间中,四面体的任意三个面的面积之和大于第四个面的面积”;
④“在平面内,过不在同一条直线上的三个点有且只有一个圆”类比推出“在空间中,过不在同一个平面上的四个点有且只有一个球”.
上述四个推理中,结论正确的个数有(
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的不等式x2﹣(m+1)x+m<0的解集为A,若集合A中恰好有4个整数,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知0<a<1,函数f(x)=logax.
(1)若f(5a﹣1)≥f(2a),求实数a的最大值;
(2)当a= 时,设g(x)=f(x)﹣3x+2m,若函数g(x)在(1,2)上有零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分图象如图所示,则( )

A.f(x)的一个对称中心为
B.f(x)的图象关于直线 对称
C.f(x)在 上是增函数
D.f(x)的周期为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆M: + =1(a>0)的一个焦点为F(﹣1,0),左右顶点分别为A,B,经过点F的直线l与椭圆M交于C,D两点.
(Ⅰ)求椭圆方程;
(Ⅱ)记△ABD与△ABC的面积分别为S1和S2 , 求|S1﹣S2|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}满足3a8=5a15 , 且 ,Sn为其前n项和,则数列{Sn}的最大项为(
A.
B.S24
C.S25
D.S26

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省高考改革新方案,不分文理科,高考成绩实行“3+3”的构成模式,第一个“3”是语文、数学、外语,每门满分150分,第二个“3”由考生在思想政治、历史、地理、物理、化学、生物6个科目中自主选择其中3个科目参加等级性考试,每门满分100分,高考录取成绩卷面总分满分750分.为了调查学生对物理、化学、生物的选考情况,将“某市某一届学生在物理、化学、生物三个科目中至少选考一科的学生”记作学生群体S,从学生群体S中随机抽取了50名学生进行调查,他们选考物理,化学,生物的科目数及人数统计如表:

选考物理、化学、生物的科目数

1

2

3

人数

5

25

20

(I)从所调查的50名学生中任选2名,求他们选考物理、化学、生物科目数量不相等的概率;
(II)从所调查的50名学生中任选2名,记X表示这2名学生选考物理、化学、生物的科目数量之差的绝对值,求随机变量X的分布列和数学期望;
(III)将频率视为概率,现从学生群体S中随机抽取4名学生,记其中恰好选考物理、化学、生物中的两科目的学生数记作Y,求事件“y≥2”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义 为n个正数p1 , p2 , …,pn的“均倒数”.若已知正数数列{an}的前n项的“均倒数”为 ,又bn= ,则 + + +…+ =( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案