精英家教网 > 高中数学 > 题目详情
(2009•滨州一模)已知P点在曲线F:y=x3-x上,且曲线F在点P处的切线与直线x+2y=0垂直,则点P的坐标为(  )
分析:曲线F在点P处的切线的斜率等于函数y=x3-x在此点的导数值,就是直线x+2y=0斜率的负倒数,先求出点P的横坐标,再代入函数关系式求出纵坐标,可得P的坐标.
解答:解:∵曲线F在点P处的切线与直线x+2y=0垂直∴曲线F在点P处的切线斜率为:2,
∵y′=3x2-1,由3x2-1=2得,x=±1,∴y=0,
∴点P的坐标为(1,0)或(-1,0);
故选C.
点评:本题考查函数导数的几何意义.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•滨州一模)由曲线y=x2和直线x=0,x=1,以及y=0所围成的图形面积是
1
3
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•滨州一模)已知a是实数,
a+i
1-i
是纯虚数,则a等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•滨州一模)定义运算:
.
a1a2
b1b2
.
=a1b2-a2b1
,将函数f(x)=
.
3
sinx
1cosx
.
的图象向左平移t(t>0)个单位,所得图象对应的函数为偶函数,则t的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•滨州一模)等差数列{an}中,a5+a11=30,a4=7,则a12的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•滨州一模)已知、B、C分别为△ABC的三边a、b、c所对的角,向量
m
=(sinA,sinB)
n
=(cosB,-cosA)且
m
n
=2C

(Ⅰ)求角C的大小;
(Ⅱ)若sinA,sinC,sinB成等差数列,且
CA
•(
AB
-
AC
)=18
,求边c的长.

查看答案和解析>>

同步练习册答案