精英家教网 > 高中数学 > 题目详情
14.若函数f(x)同时满足①对于定义域上的任意x,恒有f(x)+f(-x)=0;②对于定义域上的任意x1、x2,当x1≠x2时,恒有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,则称函数f(x)为“理想函数”.给出下列三个函数中:(1)f(x)=$\frac{1}{x}$;(2)f(x)=x+1;(3)f(x)=$\left\{\begin{array}{l}{-{x}^{2},x≥0}\\{{x}^{2},x<0}\end{array}\right.$,能被称为“理想函数”的有(3)(填相应的序号).

分析 由已知得“理想函数”既是奇函数,又是减函数,由此判断所给三个函数的奇偶性和单调性,能求出结果.

解答 解:∵函数f(x)同时满足①对于定义域上的任意x,恒有f(x)+f(-x)=0;
②对于定义域上的任意x1,x2,当x1≠x2时,恒有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,则称函数f(x)为“理想函数”,
∴“理想函数”既是奇函数,又是减函数,
在(1)中,f(x)=$\frac{1}{x}$是奇函数,但不是减函数,故(1)不是“理想函数”;
在(2)中,f(x)=x+1在(-∞,+∞)内是增函数,故(2)不是“理想函数”;
在(3)中,f(x)=$\left\{\begin{array}{l}{-{x}^{2},x≥0}\\{{x}^{2},x<0}\end{array}\right.$,是奇函数,且是减函数,故(3)能被称为“理想函数”.
故答案为:(3).

点评 本题考查了新定义、函数的奇偶性、单调性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,并且|F1F2|=6,动点P在椭圆C上,△PF1F2的周长为16.
(1)求椭圆C的标准方程;
(2)若点M满足|$\overrightarrow{M{F}_{2}}$|=1且$\overrightarrow{MP}$•$\overrightarrow{M{F}_{2}}$=0,求|$\overrightarrow{PM}$|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=ex+x-2的零点所在的区间是①(填正确的序号)
①(0,$\frac{1}{2}$)②($\frac{1}{2}$,1)③(1,2)④(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设F1、F2为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦点,过F2作椭圆长轴的垂线交椭圆于点P,若∠PF1F2=60°,则椭圆的离心率是2-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如果等差数列{an}中,a1=2,a3=6.则数列{2an-3}是公差为4的等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=ax3-x2+5x,a∈R.
(1)当0<a≤$\frac{1}{15}$时,求函数f(x)的单调区间;
(2)设φ(x)=($\frac{1}{3}-a$)x3+2x2-(2a+5)x,并且函数g(x)=f(x)+φ(x)在[-5,-3]上是增函数,求a的取值范围;
(3)若a≠0,且f(x)在区间(5,+∞)的一个子区间上为减函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.二次函数f(x)=ax2+bx+c的导函数为f′(x),已知f′(0)>0,且对任意实数x,有f(x)≥0,则$\frac{f(1)}{f′(0)}$的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数f(x)=cosx-x的零点在区间(k-1,k)(k∈Z)内,则k=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中满足条件acosB+bcosA=2ccosC.
(1)求∠C.
(2)若c=2,求三角形ABC面积的最大值.

查看答案和解析>>

同步练习册答案