精英家教网 > 高中数学 > 题目详情

【题目】如图,在△ABC中,AB=2,cosB= ,点D在线段BC上.

(1)若∠ADC= π,求AD的长;
(2)若BD=2DC,△ACD的面积为 ,求 的值.

【答案】
(1)解:∵△ABC中,cosB= ,∴sinB=

∵∠ADC= π,∴∠ADB=

△ABD中,由正弦定理可得 ,∴AD=


(2)解:设DC=a,则BD=2a,

∵BD=2DC,△ACD的面积为

∴4 =

∴a=2

∴AC= =4

由正弦定理可得 ,∴sin∠BAD= sin∠ADB.

= ,∴sin∠CAD= sin∠ADC,

∵sin∠ADB=sin∠ADC,

=


【解析】(1)△ABD中,由正弦定理可得AD的长;(2)利用BD=2DC,△ACD的面积为 ,求出BD,DC,利用余弦定理求出AC,利用正弦定理可得结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,定义两点A(xA , yA),B(xB , yB)间的“L﹣距离”为d(A﹣B)=|xA﹣xB|+|yA﹣yB|.现将边长为1的正三角形按如图所示方式放置,其中顶点A与坐标原点重合,记边AB所在的直线斜率为k(0≤k≤ ),则d(B﹣C)取得最大值时,边AB所在直线的斜率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的焦点为F,动点P在直线上运动,过P作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.

(1)求△APB的重心G的轨迹方程.

(2)证明∠PFA=∠PFB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足0<an<1,且an+1+ =2an+ (n∈N*).
(1)证明:an+1<an
(2)若a1= ,设数列{an}的前n项和为Sn , 证明: <Sn ﹣2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是(  )

A. 恰有1件一等品 B. 至少有一件一等品

C. 至多有一件一等品 D. 都不是一等品

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形为菱形, 底面为直线上一动点.

Ⅰ)求证:

Ⅱ)若 分别为线段 的中点,求证: 平面

Ⅲ)直线上是否存在点,使得平面平面?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合Z={(x,y)|x∈[0,2],y[-1,1]}.

(1)若x,yZ求x+y≥0的概率;

(2)若x,yR求x+y≥0的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个,已知从袋子中随机抽取1个小球,取到标号为2的小球的概率是.

(1)n的值;

(2)从袋子中不放回地随机抽取2个球,记第一次取出小球标号为a,第二次取出的小球标号为b.①ab2”为事件A,求事件A的概率;

在区间[0,2]内任取2个实数xy,求事件x2y2>(ab)2恒成立的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直四棱柱的所有棱长均为2, 中点.

(Ⅰ)求证: 平面

(Ⅱ)求证:平面平面.

查看答案和解析>>

同步练习册答案